General aspects of the corrosion fatigue of metals and alloys

  • V. I. Pokhmurskii
Article
  • 36 Downloads

Keywords

Fatigue General Aspect Corrosion Fatigue 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    G. V. Akimov, Bases for Studying Corrosion and Metal Protection [in Russian], Metallurgiya, Moscow (1946).Google Scholar
  2. 2.
    L. A. Glikman, Corrosion-Mechanical Strength of Metals [in Russian], Mashgiz, Moscow-Leningrad (1955).Google Scholar
  3. 3.
    G. V. Karpenko, “Adsorption-electrochemical hypothesis for the corrosion fatigue mechanism,” in: Metal Corrosion and Methods for Combatting It [in Russian], Oborongiz, Moscow (1955), pp. 52–70.Google Scholar
  4. 4.
    G. V. Karpenko, Steel Strength in a Corrosive Environment [in Russian], Mashgiz, Moscow-Kiev (1963).Google Scholar
  5. 5.
    G. V. Karpenko, Effect of Reactive Liquid Agents on Steel Endurance [in Russian], Izd. Akad. Nauk UkrSSR, Kiev (1955).Google Scholar
  6. 6.
    A. V. Ryabchenkov, Corrosion-Fatigue Strength of Steels [in Russian], Mashgiz, Moscow (1953).Google Scholar
  7. 7.
    V. V. Romanov, Effect of a Corrosive Agent on the Cyclic Strength of Metals [in Russian], Nauka, Moscow (1969).Google Scholar
  8. 8.
    A. V. Karlashov, A. N. Yarov, K. M. Gil'man, N. A. Zhidovtsev, and A. P. Batov, Corrosion-Fatigue Strength of Aluminum Alloy Drilling Pipes [in Russian], Nedra, Moscow (1977).Google Scholar
  9. 9.
    U. R. Evans, Corrosion, Passivity, and Metal Protection [in Russian], Metallurgizdat, Moscow-Leningrad (1941).Google Scholar
  10. 10.
    D. I. McAdam, Jr., Proc. Am. Soc. Test. Mater.,26, 224–230 (1926).Google Scholar
  11. 11.
    V. I. Pokhmurskii, Corrosion-Fatigue Strength of Steels and Ways of Improving It [in Russian], Naukova Dumka, Kiev (1974).Google Scholar
  12. 12.
    V. I. Pokhmurskii, Ya. M. Sirak, G. M. Filiminov, T. G. Tsvetaeva, and V. I. Stodilka, “Improving the corrosion-fatigue strenth of steel shafts by SPS,” in: Cyclic Strength and Improving the Supporting Capacity of Articles [in Russian], Perm' (1978), pp. 28–29.Google Scholar
  13. 13.
    V. I. Pokhmurskii, A. L. Boltarovich, K. P. Tabinskii, I. L. Meerson, and G. V. Karpenko, “Effect of some coatings on fatigue and corrosion-fatigue strength of steel Kh17N2,” Fiz.-Khim. Mekh. Mater., No. 6, 694–696 (1965).Google Scholar
  14. 14.
    G. V. Karpenko and F. P. Yanchishin, “Do pitaniya pro odnochasnii vpliv na vitrivalist' stall koroziinogo seredovishcha i kontsentratisii naprugi,” DokL Akad. Nauk URSR, No. 6, 525–528 (1955).Google Scholar
  15. 15.
    R. G. Pogoretskii, M. M. Matseiko, and G. V. Karpenko, “Effect of concentrator severity on the endurance of steel specimens in a corrosive agent,” Fiz.-Khim. Mekh. Mater., No. 1, 11–15 (1969).Google Scholar
  16. 16.
    R. G. Pogoretskii, M. M. Matseiko, and G. V. Karpenko, “Link between the size effect during steel corrosion fatigue with stress concentration,” Fiz.-Khim. Mekh. Mater., No. 3, 11–14 (1971).Google Scholar
  17. 17.
    A. V. Boltarovich, V. I. Pokhmurskii, I. L. Meierson, and G. V. Karpenko, “Corrosion-fatigue strength of some stainless steels and alloys,” in: Mechanical Fatigue Questions. Collected Papers. All-Union Scientific and Technical Conference [in Russian], Moscow (1965), pp. 21–28.Google Scholar
  18. 18.
    R. G. Pogoretskii, M. M. Matseiko, and G. V. Karpenko, “Effect of concentrator severity on the endurance of steel specimens in a corrosive agent,” Fiz.-Khim. Mekh. Mater., No. 1, 11–15 (1969).Google Scholar
  19. 19.
    G. V. Karpenko, R. G. Pogoretskii, and I. I. Kadar, “Effect of loading frequency on the fatigue and corrosion-fatigue of steel specimens with attachments,” Fiz.-Khim. Mekh. Mater., No. 3, 3–6 (1972).Google Scholar
  20. 20.
    A. V. Karlashov and V. P. Tokarev, “Physical nature of the frequency effect during fatigue of duralumin in air and in a corrosive agent,” Fiz.-Khim. Mekh. Mater., No. 4, 14–18 (1971).Google Scholar
  21. 21.
    Ya. M. Sirak, “The role of material for parts in contact in the resistance of steel to corrosion-fatigue failure,” Fiz.-Khim. Mekh. Mater., No. 2, 161–164 (1969).Google Scholar
  22. 22.
    I. V. Kudryavtsev, Internal Stresses as a Strength Reserve in Engineering [in Russian], Mashgiz, Moscow (1951).Google Scholar
  23. 23.
    Yu. I. Babei, “Mechanical treatment as a method for increasing endurance of structural alloys in reactive media,” Fiz.-Khim. Mekh. Mater., No. 2, 3–14 (1975).Google Scholar
  24. 24.
    G. N. Filimonov, T. G. Tsvetaeva, I. A. Nironovich, V. I. Pokhmurskii, and I. I. Kadar, “Efficiency of rolling treatment on pressed joints of large shafts with supplementary keyed fixings,” Vestn. Mashinostr., No. 3, 64–66 (1977).Google Scholar
  25. 25.
    G. V. Karpenko and A. V. Karlashov, “Effect of absolute specimen dimensions on the adsorption and corrosion fatigue of steel,” Dokl. Akad. Nauk SSSR,92, No. 3, 603–605 (1953).Google Scholar
  26. 26.
    L. A. Glikman and E. N. Kostrov, “Features of corrosion-fatigue failure in stainless steel 1Khl8N9T,” in: G. V. Karpenko (editor), Corrosion Fatigue of Metals [in Russian], Kamenyar, L'vov (1964), pp. 16–26.Google Scholar
  27. 27.
    G. V. Karpenko and R. G. Pogoretskii, “The size effect during fatigue and corrosion-fatigue of steels,” Dokl. Akad. Nauk SSSR,206, No. 6, 1337–1338 (1972).Google Scholar
  28. 28.
    V. I. Pokhmurskii, A.A. Rudakov, and M. M. Matseiko, “Cyclic strength of stainless austenitic metastable steel 0Kh14AG12M,” Fiz.-Khim. Mekh. Mater., No. 4, 114–115 (1978).Google Scholar
  29. 29.
    V. T. Stepurenko, Study of the Corrosion Resistance and Corrosion-Mechanical Strength of Steel 45 [in Russian], Izd. Akad. Nauk UkrSSR, L'vov (1958).Google Scholar
  30. 30.
    P. Paris and F. Erdogan, “Critical analysis of crack distribution laws,” Trudy AOIM, Series D, Tekh. Mekh., No. 4, 60–66 (1963).Google Scholar
  31. 31.
    Foreman, Kerny, and Engel, “Numerical study of crack propagation in cyclically loaded structures,” Trudy AOIM, Series D, Teor. Osn. Inzh. Raschetov, No. 3, 3–11 (1967).Google Scholar
  32. 32.
    F. Erdogan and M. Ratwani, “Fatigue and fracture of a cylindrical shell containing a circumferential crack,” Jut. J. Fract. Mech.,6, No. 4, 379–392 (1970).Google Scholar
  33. 33.
    G. P. Cherepanov and V. D. Kuliev, “Effects of loading frequency and inactive external agents of fatigue crack growth,” Probl. Prochn., No. 1, 31–36 (1972).Google Scholar
  34. 34.
    S. Ya. Yarema and S. I. Mikitishin, “Analytical description of the fatigue failure diagram for materials,” Fiz.-Khim. Mekh. Mater., No. 6, 47–54 (1975).Google Scholar
  35. 35.
    N. Ya. Yaremchenko and V. I. Pokhmurskii, “Effect of drilling solutions on crack growth rate and the nature of failure of aluminum pipes,” Fiz.-Khim. Mekh. Mater., No. 2, 13–14 (1978).Google Scholar
  36. 36.
    L. M. Bilyi, V. I. Pokhmurskii, M. M. Shved, and V. A. Fedorova, “Role of hydrogen in the fatigue failure kinetics of steel U8,” Fiz.-Khim. Mekh. Mater., No. 1, 67–70 (1978).Google Scholar
  37. 37.
    V. I. Ermolenko, “Study of the corrosive effect of environment on fatigue crack growth,” Fiz.-Khim, Mekh. Mater., No. 1, 12–15 (1979).Google Scholar
  38. 38.
    S. Ya. Yarema, “Study of fatigue crack growth and kinetic fatigue failure diagrams,” Fiz.-Khim. Mekh. Mater., No. 4, 3–22 (1977).Google Scholar
  39. 39.
    C. M. Hudson, “Literature review and inventory of the effect of environment on the fatigue behavior of metal,” Eng. Fract. Mech.,8, No. 2, 315–329 (1976).Google Scholar
  40. 40.
    V. I. Pokhmurskii, L. Ya. Poberezhnyi, and T. N. Kalichak, “Mechanisms of inelastic strain of metals during cyclic loading in air and in liquid media,” Fiz.-Khim. Mekh. Mater., No. 5, 3–12 (1978).Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • V. I. Pokhmurskii
    • 1
  1. 1.Physicomechanical InstituteAcademy of Sciences of the Ukrainian SSRL'vov

Personalised recommendations