Fatigue crack growth in metals at low temperatures (a review)

  • O. P. Ostash
  • V. T. Zhmur-Klimenko
Article
  • 215 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    V. T. Troshchenko and V. V. Pokrovskii, “Investigation of the rules of fatigue and brittle fracture of 15G2AFDps steel at low temperatures,” Probl. Prochn., No. 3, 11–17 (1973).Google Scholar
  2. 2.
    W. G. Clark and H. E. Trout, “Influence of temperature and section size on fatigue crack growth behavior in Ni-Mo-V alloy steel,” Eng. Fract. Mech.,2, No. 2, 107–123 (1970).Google Scholar
  3. 3.
    H. Ishii and J. Weertman, “Fatigue crack propagation in copper and Cu-Al single crystals,” Met. Trans.,2, No. 12, 3441–3452 (1971).Google Scholar
  4. 4.
    J. D. Frandsen, N. E. Paton, and H. L. Marcus, “The influence of gaseous environments on fatigue crack growth in a nickel-copper alloy,” Met. Trans.,5, No. 7, 1655–1661 (1974).Google Scholar
  5. 5.
    A. A. Anctil and E. B. Kula, “Effect of tempering temperature on fatigue crack propagation in 4340 steel,” in: Effects of Environment and Complex Load History on Fatigue, ASTM STP 462, ASTM (1970), pp. 297–317.Google Scholar
  6. 6.
    R. P. Wei and D. L. Ritter, “The influence of temperature on fatigue crack growth in a mild annealed Ti-6A1-4V alloy,” J. Mater.,7, No. 2, 240–250 (1972).Google Scholar
  7. 7.
    O. P. Ostash, “An investigation of the kinetics of low-temperature fatigue failure of constructional steels and aluminum alloys,” Authors' Abstract of Candidate's Thesis, Technical Sciences, Lvov (1978).Google Scholar
  8. 8.
    S. Ya. Yarema and O. P. Ostash, “An investigation of the development of fatigue cracks at low temperatures,” Fiz.-Khim. Mekh. Mater., No. 2, 48–52 (1975).Google Scholar
  9. 9.
    S. Ya. Yarema, A. Ya. Krasovskii, O. P. Ostash, and V. A. Stepanenko, “The development of fatigue failure in low-carbon sheet steel at room and low temperatures,” Probl. Prochn., No. 3, 21–26 (1977).Google Scholar
  10. 10.
    O. N. Romaniv, E. A. Shur, A. N. Tkach, et al., “The kinetics and mechanism of fatigue crack growth in iron,” Fiz.-Khim. Mekh. Mater., No. 2, 57–66 (1981).Google Scholar
  11. 11.
    E. Tschegg. and S. Stanzl, “Fatigue crack propagation and threshold in bcc metals at 77 and 293° K,” Acta Met.,29, No. 1, 33–40 (1981).Google Scholar
  12. 12.
    L. H. Burck and J. Weertman, “Fatigue crack propagation in iron and Fe-Mo solid solution alloys (77 to 293°K),” Met. Trans.,7A, No. 2, 257–264 (1976).Google Scholar
  13. 13.
    A. Ya. Krasovskii, O. P. Ostash, V. A. Stepanenko, and S. Ya. Yarema, “The influence of low temperatures on the rate and microfractographic features of development of a fatigue crack in low-carbon steel,” Probl. Prochn., No. 4, 74–78 (1977).Google Scholar
  14. 14.
    R. I. Stephens, S. G. Lee, and H. W. Lee, “Thresold and near threshold fatigue c growth of five cast steels at room temperature had − 45°C,” Trans. ASME: J. Eng. Technol.,107, No. 2, 166–171 (1985).Google Scholar
  15. 15.
    T. Kawasaki, S. Nakanishi, J. Sawaki, et al., “Fracture toughness and fatigue crack propagation in high-strength steels from room temperature to −180°C,” Eng. Fract. Mech.,7, No. 3, 465–472 (1975).Google Scholar
  16. 16.
    V. I. Startsev, V. Ya. Il'ichev, and V. V. Pustovalov, The Plasticity and Strength of Metals and Alloys at Low Temperatures [in Russian], Metallurgiua, Moscow (1975), pp. 45–55.Google Scholar
  17. 17.
    M. N. Georgiev, V. N. Danilov, V. N. Minaev, et al., “The influence of temperature on fatigue crack development resistance in 3sp, 18Gsp, and 09G2S steels,” Probl. Prochn., No. 5, 45–50 (1978).Google Scholar
  18. 18.
    N. R. Moody and W. W. Gerberich, “Fatigue crack propagation in iron and two iron binary alloys at low temperatures,” Mater. Sci. Eng.,41, No. 2, 271–280 (1979).Google Scholar
  19. 19.
    V. T. Troshchenko, V. V. Pokrovskii, Yu. S. Skorenko, et al., “The influence of the cyclicness of leading on the crack resistance characteristics of steels. Report 1,” Probl. Prochn., No. 11, 3–10 (1980).Google Scholar
  20. 20.
    J. P. Lukáš and W. W. Gerberich, “Low temperature and grain-size effects on threshold and fatigue crack propagation in a high-strength low-alloy steel,” Mater. Sci. Eng.,51, No. 2, 203–212 (1981).Google Scholar
  21. 21.
    V. A. Serdyuk, “An investigation of fatigue crack growth rate in magnesium alloys at room and low temperatures,” Probl. Prochn., No. 11, 18–23 (1980).Google Scholar
  22. 22.
    R. J. Wolfe, H. H. J. Vanderveldt, and A. E. Henn, “Some considerations of fracture mechanics applications in ships design, construction, and operation,” Eng. Fract. Mech.,7, No. 3, 565–581 (1975).Google Scholar
  23. 23.
    S. Ya. Yarema, O. P. Ostash, V. M. Beletskii, et al., “The change in fatigue crack growth rate in D16A and V95A alloy sheet with a reduction in temperature,” Fiz.-Khim. Mekh. Mater., No. 2, 5–10 (1977).Google Scholar
  24. 24.
    O. P. Ostash, S. Ya. Yarema, and V. A. Stepanenko, “The influence of low temperatures on the rate and microfractographic features of fatigue crack development in aluminum alloys,” Fiz.-Khim. Mekh. Mater., No. 3, 26–30 (1977).Google Scholar
  25. 25.
    O. P. Ostash, “The influence of the microstructure of D16 and V95 aluminum alloys on fatigue crack development at normal and low temperatures,” Fiz.-Khim. Mekh. Mater., No. 2, 38–42 (1978).Google Scholar
  26. 26.
    J. McKittrick, P. K. Liaw, S. J. Kwun, and M. E. Fine, “Threshold for fatigue macrocrack propagation in some aluminum alloys,” Met. Trans.,12A, No. 8, 1535–1539 (1981).Google Scholar
  27. 27.
    Q. P. Ostash, S. Ya. Yarema, K. A. Yushchenko, et al., “The influence of the structure of 03Kh13AG19 steel on fatigue crack development at normal and low temperatures,” Fiz.-Khim. Mekh. Mater., No. 6, 56–61 (1977).Google Scholar
  28. 28.
    O. P. Ostash, V. T. Zhmur-Klimenko, and L. P. Strok, “The influence of deformation martensite on the low-temperature cyclic crack resistance of a weld joint of 03Kh13AG19 steel,” Fiz.-Khim. Mekh. Mater., No. 2, 49–55 (1983).Google Scholar
  29. 29.
    O. P. Ostash, V. T. Zhmur-Klimenko, S. Ya. Yarema, et al., “The low-temperature cyclic crack resistance of weld joints of Fe-Cr-Ni and Fe-Cr-Mn steels,” Fiz.-Khim. Mekh. Mater., No. 3, 39–43 (1983).Google Scholar
  30. 30.
    O. P. Ostash, V. T. Zhmur-Klimenko, K. A. Yushchenko, et al., “The influence of low temperature on the rate and microfractographic features of fatigue crack development in 07Kh13G20AN4 steel,” Fiz.-Khim. Mekh. Mater., No. 2, 112–114 (1981).Google Scholar
  31. 31.
    O. P. Ostash and V. T. Zhmur-Klimenko, “The influence of structure and phase composition on the low-temperature cyclic crack resistance of weld joints of meta-stable austenitic steels,” Fiz.-Khim. Mekh. Mater., No. 1, 47–51 (1985).Google Scholar
  32. 32.
    Yu. W. Esaklul and W. W. Gerberich, “Fatigue threshold studies in Fe, Fe-Si and HSLA steel: Part II. Thermally activated behavior of the effective stress intensity at threshold,” Met. Trans.,15A, No. 5, 889–900 (1984).Google Scholar
  33. 33.
    T. Yokobori, “A kinetic theory of fatigue crack propagation,” Repts. Res. Inst. Str. Fract. Mater., Tohoku Univ.,5, No. 1, 19–24 (1969).Google Scholar
  34. 34.
    S. Ya. Yarema and O. P. Ostash, “The use of the kinetic equation for description of the temperature relationship of fatigue crack growth rate,” Fiz.-Khin. Mekh. Mater., No. 5, 48–51 (1976).Google Scholar
  35. 35.
    P. K. Liaw and M. E. Fine, “Fatigue crack propagation in 99.99 and 1100 aluminum at 298 and 77°K,” Met. Trans.,12A, No. 11, 1927–1937 (1981).Google Scholar
  36. 36.
    O. P. Ostash and V. T. Zhmlimenko, “Low-temperature kinetic fatigue failure diagrams of metals and their weld in: Materials of the Eighth All-Union Conference of the Fatigue of Metals [in Russian], Inst. Met. Akad. Nauk SSSR, Moscow (1982), pp. 81–83.Google Scholar
  37. 37.
    O. N. Romaniv, “The structural concept of the thresholds of fatigue of constructional alloys,” Fiz.-Khim. Mekh. Mater., No. 1, 106–116 (1986).Google Scholar
  38. 38.
    S. Ya. Yarema and O. P. Ostash, “The fracture toughness of materials in cyclic loading,” Fiz.-Khim. Mekh. Mater., No. 5, 112–114 (1978).Google Scholar
  39. 39.
    V. T. Zhmur-Klimenko, “The low-temperature cyclic crack resistance of weld joints of chrome-manganese steels,” Author's Abstract of Candidate's Thesis, Technical Sciences, Lvov (1985).Google Scholar
  40. 40.
    N. V. Novikov, A. L. Maistrenko, and A. P. Ul'yanenko, Design Strength at Low Temperatures [in Russian], Naukova Dumka, Kiev (1979).Google Scholar
  41. 41.
    G. S. Pisarenko and V. A. Strizhalo, “Certain problems of low-temperature strengthening of metals and taking it into consideration in low-temperature technology,” in: The Strength of Materials and Structures at Low Temperatures: Collected Scientific Works [in Russian], Naukova Dumka, Kiev (1984), pp. 3–12.Google Scholar
  42. 42.
    V. P. Belyakov, N. B. Filin, B. A. Kuranov, et al., “Pressing problems of increasing the strength, life, and economy of cryogenic equipment,” in: Steels and Alloys for Cryogenic Technology [in Russian], Naukova Dumka, Kiev (1977), pp. 101–107.Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • O. P. Ostash
    • 1
  • V. T. Zhmur-Klimenko
    • 1
  1. 1.G. V. Karpenko Physicomechanical InstituteAcademy of Sciences of the Ukrainian SSRLvov

Personalised recommendations