Skip to main content
Log in

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  1. V. V. Panasyuk, “Contemporary problems of fracture mechanics,” Fiz.-Khim. Mekh. Mater., No. 2, 7–27 (1982).

    Google Scholar 

  2. G. P. Cherepanov, The Fracture Mechanics of Composite Materials [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  3. G. Johnson, “The influence of the medium on the fracture of high-strength materials,” in: Fracture, H. Leibowitz (ed.) [Russian translation], Vol. 3, Mir, Moscow (1976), pp. 729–775.

    Google Scholar 

  4. A. E. Andreikiv, V. V. Panasyuk, and V. S. Kharin, “Theoretical aspects of the kinetics of hydrogen embrittlement of metals,” Fiz.-Khim. Mekh. Mater., No. 3, 3–23 (1978).

    Google Scholar 

  5. V. V. Panasyuk, A. E. Andreikiv, and O. I. Obukhivskii, “A calculation model of crack growth in metals under the action of hydrogen,” ibid., No. 3, 3–6 (1984).

    Google Scholar 

  6. A. V. Fishgoit and B. A. Kolachev, “Crack propagation in hydrogen impregnated metal in plane strain,” ibid., No. 4, 76–81 (1981); A. V. Fishgoit and B. A. Kolachev, “Crack propagation in titanium alloys located in a hydrogen atmosphere under constant load,” ibid., No, 6, 33–39 (1982); A. V. Fishgoit and B. A. Kolachev, “A model of subcritical crack growth under the action of cold creep and dissolved hydrogen,” ibid., No. 4, 3–5 (1985).

    Google Scholar 

  7. R. Raj and V. K. Varadan, “The kinetics of hydrogen assisted crack growth,” in: Mechanisms of Environment-Sensitive Cracking of Materials, The Metals Society, London (1977), pp. 426–436.

    Google Scholar 

  8. V. V. Panasyuk, A. E. Andreikiv, and V. S. Kharin, “A theoretical analysis of crack growth in metals under the action of hydrogen,” Fiz.-Khim, Mater., No. 4, 61–75 (1981).

    Google Scholar 

  9. V. I. Vladimirov, “Dislocation mechanisms of fracture,” in: The Physics of Brittle Fracture [in Russian], Vol. 2, Kiev (1976), pp. 29–44.

    Google Scholar 

  10. V. I. Vladimirov, The Physical Nature of the Fracture of Metals [in Russian], Metallurgiya, Moscow (1984).

    Google Scholar 

  11. J. Weertman, “Crack tip blunting by dislocation pair creation and separation,” Philos. Mag.,A43, No. 5, 1103–1123 (1981).

    Google Scholar 

  12. G. M. Grigor'eva, K. V. Popov, and E. S. Nosyreva, “Features of the formation and development of cracks in the fracture of hydrogen-impregnated iron,” Fiz. Met. Metalloved.,30, No. 3, 637–639 (1970).

    Google Scholar 

  13. M. Gell and W. D. Robertson, “An analysis of plastic deformation around stationary cleavage cracks,” Acta Met.,4, No. 4, 481–490 (1966).

    Google Scholar 

  14. A. K. Emaletdinov and Sh. Kh. Khannanov, “Blunting of a crack tip in concentrated plastic flow,” Fiz. Met. Metalloved.,44, No. 3, 460–467 (1977).

    Google Scholar 

  15. J. R. Rice and M. A. Johnson, “The role of large crack tip geometry changes in plane strain fracture,” Inelastic Behavior of Solids, McGraw-Hill, New York (1970), pp. 641–672.

    Google Scholar 

  16. R. M. McMeeking, “Finite deformation analysis of crack tip opening in elastic-plastic materials and implications for fracture,” J. Mech. Phys. Solids,25, No. 5, 357–381 (1977).

    Google Scholar 

  17. K. Sadananda, K. Jagannadham, and M. J. Marcinkowski, “Discrete dislocation analysis of a tensile crack,” Phys. Status Solidi,A44, No. 2, 633–642 (1977).

    Google Scholar 

  18. B. Celis, A. S. Argon, and S. Yip, “Molecular dynamics simulation of crack tip processes in alpha-iron and copper,” J. Appl. Phys.,54, No. 9, 4864–4878 (1983).

    Google Scholar 

  19. M. F. Kanninen and P. C. Gehlen, “Atomic simulation of crack extension in bcc iron,” Int. J. Fract. Mech.,7, No. 4, 471–474 (1971).

    Google Scholar 

  20. A. Tetel'men, “Plastic deformation at the tip of a moving crack,” in: The Fracture of Solids [in Russian], Metallurgiya, Moscow (1967), pp. 261–301.

    Google Scholar 

  21. G. M. Grigor'eva, K. V. Popov, and E. S. Nosyreva, “The mechanism of formation of microcracks in hydrogen-impregnated iron,” Fiz. Met. Metalloved.,27, No. 2, 356–358 (1969).

    Google Scholar 

  22. É. A. Savchenkov and A. F. Svetlichkin, “The fracture of steel in different stages of hydrogen embrittlement,” Metalloved. Term. Obrab. Met., No. 12, 19–21 (1980).

    Google Scholar 

  23. A. Tetel'men, “The hydrogen brittleness of iron alloys,” in: The Fracture of Solids [in Russian], Metallurgiya, Moscow (1967), pp. 463–499.

    Google Scholar 

  24. M. R. Louthan, G. R. Caskey, J. A. Donovan, and D. E. Rawl, “Hydrogen embrittlement of metals,” Mater. Sci. Eng.,10, No. 6, 357–368 (1972).

    Google Scholar 

  25. C. D. Beachem, “A new model for hydrogen-assisted cracking (hydrogen ‘embrittlement’),” Met. Trans.,3, No. 2, 437–451 (1972).

    Google Scholar 

  26. A. W. Thompson and I. M. Bernstein, “The role of plastic fracture processes in hydrogen embrittlement,” in: Advances in Research on the Strength and Fracture of Materials: 4th International Conference of Fracture, Waterloo, Vol. 2A, New York (1978), pp. 249–254 (1978).

    Google Scholar 

  27. V. I. Vladimirov, D. N. Karpinskii, A. N. Orlov, and S. V. Sannikov, “Simulation on the computer of the kinetics of deformation in the plastic zone at a crack tip,” Probl. Prochn., No. 12, 36–41 (1983).

    Google Scholar 

  28. V. I. Vladimirov, D. N. Karpinskii, A. I. Mokhov, et al., “Microscopic models of the plastic zone in front of a crack tip,” in: The Fifth All-Union Congress on Theoretical and Applied Mechanics: Annotation of Papers [in Russian], Nauka, Alma-Ata (1981), p. 91.

    Google Scholar 

  29. S. Kobayashi and S. M. Ohr, “In situ fracture experiments in bcc metals,” Philos. Mag.,42, No. 6, 763–772 (1980).

    Google Scholar 

  30. V. I. Vladimirov and Sh. Kh. Khannanov, “The plastic mechanism of crack growth,” Fiz. Met. Metalloved.,30, No. 6, 1270–1278 (1970).

    Google Scholar 

  31. J. P. Hirth, “Effects of hydrogen on the properties of iron and steel,” Met. Trans.,A11, No. 6, 861–890 (1980).

    Google Scholar 

  32. B. A. Kolachev, The Hydrogen Brittleness of Metals [in Russian], Metallurgiya, Moscow (1985).

    Google Scholar 

  33. K. MacMahon, K. Bryant, and S. Banerjee, “The influence of hydrogen and impurities on the brittle fracture of steels,” in: Fracture Mechanics. The Fracture of Materials [Russian translation], Mir, Moscow (1979), pp. 109–133.

    Google Scholar 

  34. R. P. Wei, K. Klier, G. W. Simmons, et al., Hydrogen Adsorption and Diffusion and Subcritical Crack Growth in High-Strength Steels and Nickel Base Alloys, NASA (1974).

  35. M. R. Louthan, “Effects of hydrogen on the mechanical properties of low carbon and austenitic steels,” in: Hydrogen in Metals: Proceedings of the International Conference, ASM (1974), pp. 53–75.

  36. M. H. Kamdar, “Crack nucleation in Fe-3% Si in a hydrogen environment,” ibid., pp. 107–112.

  37. J. Flis and M. Smialowski, “Hydrogen embrittlement of polycrystalline whiskers,” Scr. Met.,13, No. 7, 641–643 (1979).

    Google Scholar 

  38. J. J. Au and H. K. Birnbaum, “Hydrogen effects in the deformation of iron whiskers,” ibid.,12, No. 5, 457–459 (1968).

    Google Scholar 

  39. V. A. Marichev, “The disposition of the fracture zone in hydrogen embrittlement,” Fiz.- Khim. Mekh. Mater., No. 5, 24–29 (1981).

    Google Scholar 

  40. K. N. Akhurst and T. J. Baker, “The threshold stress intensity for hydrogen-induced crack growth,” Met. Trans.,A12, No. 6, 1059–1070 (1981).

    Google Scholar 

  41. J. Kameda and C. J. McMahon, “Solute segregation and hydrogen induced intergranular fracture in an alloy steel,” ibid.,A14, No. 5, 903–911 (1983).

    Google Scholar 

  42. A. W. Loginow and E. H. Phelps, “Steels for seamless hydrogen pressure vessels,” Corrosion,31, No. 11, 404–412 (1975).

    Google Scholar 

  43. E. Snape, “Stress-induced failure of high-strength steels in environments containing hydrogen sulphide,” Brit. Corros. J.,4, No. 5, 253–259 (1969).

    Google Scholar 

  44. V. S. Kharin, “Crack growth in metals subjected to a static load and the action of hydrogen,” Author's Abstract of Candidate's Thesis, Technical Sciences, Lvov (1984).

    Google Scholar 

  45. V. V. Panasyuk, A. Ye. Andrejkiv, and V. S. Kharin, “Crack growth in metals affected by hydrogen,” in: Advances in Fracture Research: Proceedings of the 6th International Conference of Fracture (IGF 6), Vol. 1, Pergamon Press, Oxford et al. (1984), pp. 399–426.

    Google Scholar 

  46. H. Kobayashi, K. Hirano, H. Kayabake, and H. Nakazawa, “Influence of hydrogen on fracture toughness of high strength steels,” in: Advances in Fracture Research. Proceedings of the 5th International Conference on Fracture, Vol 4, Oxford et al. (1981), pp. 1909–1916.

    Google Scholar 

  47. R. A. Oriani and P. H. Josephic, “Hydrogen enhanced load relaxation in a deformed medium carbon steel,” Acta Met.,27, No. 6, 997–1005 (1979).

    Google Scholar 

  48. R. A. Oriani and P. H. Josephic, “The effects of hydrogen on the room-temperature creep of spheroidized 1040 steel,” ibid.,29, No. 4, 669–674 (1981).

    Google Scholar 

  49. Chu Wu-Yang, Hsiao Chi-Mei, and Li Shi-Qun, “Hydrogen induced delayed plasticity and cracking,” Scr. Met.,13, No. 11, 1063–1068 (1979).

    Google Scholar 

  50. V. I. Vladimirov, “The kinetics of cracks and vacancies in crystals,” Author's Abstract of Doctoral Thesis, Physicomathematical Sciences, Leningrad (1973).

    Google Scholar 

  51. V. M. Finkel', The Physics of Fracture [in Russian], Metalluygiya, Moscow (1970).

    Google Scholar 

  52. V. V. Panasyuk, A. E. Andreikiv, and V. S. Kharin, “The origin and growth of microcracks generated by blocked accumulations of dislocations,” Fiz.-Khim. Mekh. Mater., No. 2, 5–16 (1985).

    Google Scholar 

  53. J. P. Hirth and B. Carnahan, “Hydrogen adsorption at dislocations and cracks in Fe,” Acta Met.,26, No. 12, 1795–1803 (1978).

    Google Scholar 

  54. R. A. Oriani, “The diffusion and trapping of hydrogen in steel,” ibid.,18, No. 1, 147–157 (1970).

    Google Scholar 

  55. A. J. Kumnick and H. H. Johnson, “Deep trapping states for hydrogen in deformed iron,” ibid.,28, No. 1, 33–39 (1980).

    Google Scholar 

  56. T. Matsumoto, J. Eastman, and H. K. Birnbaum, “Direct observation of enhanced dislocation mobility due to hydrogen,” Scr. Met.,15, No. 9, 1033–1037 (1981).

    Google Scholar 

  57. R. A. Oriani and P. H. Josephic, “Hydrogen-enhanced nucleation of microcavities in AISI 1045 steel,” ibid.,13, No. 6, 469–471 (1979).

    Google Scholar 

  58. A. W. Thompson, “The mechanism of hydrogen participation in ductile fracture,” in: Effect of Hydrogen on Behavior of Materials: Proceedings of the International Conference, Moran, 1975, Met. Soc. AIME, New York (1976), pp. 467–477.

    Google Scholar 

  59. A. Kottrell, Dislocations and Plastic Flow in Crystals [in Russian], Metallurgizdat, Moscow, (1958).

    Google Scholar 

  60. A. Gourmelon, “Influence de l'hydrogéne sur la déformation plastique et la rupture du fer,” Mém. Sci. Rev. Mét., 72, No. 6, 475–489 (1975).

    Google Scholar 

  61. E. O. Hall, “The anelastic and plastic properties of metal-hydrogen systems,” Metals Forum,2, No. 3, 149–163 (1979).

    Google Scholar 

  62. R. A. Oriani and P. H. Josephic, “Effects of hydrogen on the plastic properties of medium carbon steels,” Met. Trans.,A11, No. 11, 1809–1820 (1980).

    Google Scholar 

  63. Y. Tobe and H. R. Tyson, “Effect of hydrogen on yield of iron,” Scr. Met.,11, No. 10, 849–852 (1977).

    Google Scholar 

  64. H. Matsui, A. Kimura, and H. Kimura, “The orientation dependence of the yield and flow stress of high purity iron single crystals doped with hydrogen,” in: Strength of Metals and Alloys: Proceedings of the 5th International Conference, Aachen, 1979, Vol. 2, Toronto et al. (1979), pp. 977–982.

    Google Scholar 

  65. H. H. Johnson, “Hydrogen gas embrittlement,” in: Hydrogen in Metals: Proceedings of the International Conference, ASM (1974), pp. 35–49.

  66. A. R. Troiano, “The role of hydrogen and other interstitials in the mechanical behavior of metals,” Trans. ASM,52, 54–89 (1960).

    Google Scholar 

  67. V. I. Pokhmurskii and V. V. Fedorov, “Certain features of the influence of hydrogen on the magnetic and structural transformations in transition metals and alloys based on them,” Fiz.-Khim. Mekh. Mater., No. 1, 3–11 (1981).

    Google Scholar 

  68. H. M. Lee, “Solubility of hydrogen and bulk modulus in transition metals,” J. Mater. Sci.,13, No. 6, 1374–1380 (1978).

    Google Scholar 

  69. W. Losch, “Hydrogen embrittlement: a new model for the mechanism of reduction of metal cohesion,” Scr. Met.,13, No. 8, 661–664 (1979).

    Google Scholar 

  70. E. Lunarska, A. Zielinski, and M. Smialowski, “Effect of hydrogen on shear modulus of polycrystalline α-iron,” Acta Met.,25, No. 3, 305–308 (1977).

    Google Scholar 

  71. A. S. Tetelman, “Recent developments in classical (internal) hydrogen embrittlement,” in: Hydrogen in Metals: Proceedings of the International Conference, ASM (1974), pp. 17–34.

  72. T. Watanabe, “A suggestion on the estimation of lattice-decohesion of metal due to hydrogen,” Trans. Jpn. Inst. Met.,18, No. 10, 673–678 (1977).

    Google Scholar 

  73. F. E. Fujita, “The role of hydrogen in the fracture of iron and steel,” ibid.,17, No. 4, 232–238 (1976).

    Google Scholar 

  74. M. V. Vavrukh and V. B. Solov'yan, “Localization of hydrogen impurities in metal,” Fiz.-Khim. Mekh. Mater., No. 4, 26–29 (1985).

    Google Scholar 

  75. P. C. Gehlen, A. J. Markworth, and L. R. Kahn, “Atomistic studies of hydrogen-enhanced crack propagation in bcc iron,” in: Computer Simulation for Materials Applications: Proceedings of the International Conference, Gaithersburg, Vol. 2 (1976), pp. 684–694.

    Google Scholar 

  76. R. B. Heady, “Hydrogen embrittlement and hydrogen-dislocation interactions,” Corrosion,34, No. 9, 303–306 (1978).

    Google Scholar 

  77. R. A. Oriani, “A mechanistic theory of hydrogen embrittlement of steels,” Ber. Bunsenges. Phys. Chem.,76, No. 8, 848–857 (1972).

    Google Scholar 

  78. G. V. Karpenko, A. K. Litvin, V. I. Tkachev, and A. I. Soshko, “The question of the mechanism of hydrogen brittleness,” Fiz.-Khim. Mekh. Mater., No. 4, 6–12 (1973).

    Google Scholar 

  79. R. M. Gabidullin, “The influence of dislocations on the kinetics of degassing of metals,” ibid., No. 1, 52–55 (1976).

    Google Scholar 

  80. R. Gibala, “Hydrogen-dislocation interaction in iron,” Scr. Met.,4, No. 2, 77–80 (1970).

    Google Scholar 

  81. P. V. Gel'd, R. A. Ryabov, and E. S. Kodes, Hydrogen and Structural Imperfections of Metal [in Russian], Metallurgiya, Moscow (1979).

    Google Scholar 

  82. R. A. Oriani, “Hydrogen in metals,” in: Proceedings of the Conference of Fundamental Aspects of Stress Corrosion Cracking, NASA, Houston (1969), pp. 32–49.

    Google Scholar 

  83. R. A. Oriani and P. H. Josephic, “Equilibrium aspects of hydrogen-induced cracking of steels,” Acta Met.,22, No. 9, 1065–1074 (1974).

    Google Scholar 

  84. A. Kelly, High-Strength Materials [Russian translation], Mir, Moscow (1976).

    Google Scholar 

  85. V. Kafka, “The theory of slow elastoplastic deformations of polycrystalline metals with microstresses as latent variables describing the state of the material,” in: Problems of the Theory of Plasticity [Russian translation], Mir, Moscow (1976).

    Google Scholar 

  86. T. Ekobori, Scientific Fundamentals of the Strength and Fracture of Materials [in Russian], Naukova Dumka, Kiev (1978).

    Google Scholar 

  87. V. S. Ivanova, L. K. Gordienko, V. N. Geminov, et al., The Role of Dislocations in the Strengthening and Fracture of Metals [in Russian], Nauka, Moscow (1965).

    Google Scholar 

  88. Y. T. Chou, K. S. Wu, and R. P. Wei, “Time dependent flow of solute atoms near a crack tip,” Scr. Met.,12 No. 3, 249–254 (1978).

    Google Scholar 

  89. B. Ya. Lyubov and N. M. Vlasov, “Certain effects of the interaction of point and extended defects,” Fiz. Met. Metalloved.,47, No. 1, 140–157 (1979).

    Google Scholar 

  90. B. S. Bokshtein, Diffusion in Metals [in Russian], Metallurgiya, Moscow (1978).

    Google Scholar 

  91. G. S. Pisarenko and A. A. Lebedev, The Resistance of Materials to Deformation and Fracture in the Complex Stressed State [in Russian], Naukova Dumka, Kiev (1969).

    Google Scholar 

  92. S. V. Serensen, The Resistance of Materials to Fatigue and Brittle Fracture [in Russian], Atomizdat, Moscow (1975).

    Google Scholar 

  93. P. Kotterill, The Hydrogen Brittleness of Metals [in Russian], Metallurgiya, Moscow (1963).

    Google Scholar 

  94. J. B. Seabrook. N. J. Grant, and D. Carney, “Hydrogen embrittlement of SAE 1020 steel,” Trans. Met. Soc. AIME,188, No. 11, 1317–1321 (1950).

    Google Scholar 

  95. K. Farrel and A. G. Quarrel, “Hydrogen embrittlement of ultra-high-tensile steel,” J. Iron Steel Inst.,202, No. 12, 1002–1011 (1964).

    Google Scholar 

  96. O. N. Romaniv and A. N. Takch, “Macromechanical simulation of the fracture toughness of metals and alloys,” Fiz.-Khim. Mekh. Mater., No. 5, 5–22 (1977).

    Google Scholar 

  97. L. M. Kachanov, Fundamentals of the Theory of Plasticity [in Russian], Nauka, Moscow (1969).

    Google Scholar 

  98. O. D. Smiyan, “The distribution of hydrogen in the zone of deformation cracks,” Zh. Fiz. Khim.,54, No. 11, 2913–2917 (1980).

    Google Scholar 

  99. I. I. Dikii, V. G. Kostyuchenko, V. G. Cherepin, and I. I. Vasilenko, “The role of hydrogen in the process of cracking of high-strength steels in chloride solutions,” Fiz.- Khim. Mekh. Mater., No. 2, 25–29 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Fiziko-Khimicheskaya Mekhanika Materialov, Vol. 23, No. 2, pp. 3–17, March–April, 1987.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panasyuk, V.V., Andreikiv, A.E. & Kharin, V.S. A model of crack growth in deformed metals under the action of hydrogen. Soviet Materials Science 23, 111–124 (1987). https://doi.org/10.1007/BF00718130

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00718130

Keywords

Navigation