Controlled grain orientation at the surface of Bi2Sr2CaCu2Ox superconducting glass-ceramics

  • T. Komatsu
  • Y. Kuken
  • R. Sato
  • K. Sa Matusita


Bi2Sr2CaCu2Ox glass with Cu+/(Cu+ + Cu2+) = 0.76 was prepared by using a conventional melt-quenching method, and crystalline phases and grain orientations at the surface of superconducting glass-ceramics obtained by annealing at various atmospheres were examined. The grain orientation of the Bi2Sr2CaCu2Ox phase (low-Tc phase) at the surface was severely affected by oxygen partial pressure in annealing. The favourable grain orientation, in which the plate-like grains of the low-Tc phase are oriented parallel to the surface plane, was first established in the samples obtained through a newly developed two-step annealing method: first annealing at 780°C in oxygen and second annealing at above 750°C in nitrogen. It was concluded that the favourable grain orientation of the low-Tc phase at the surface occurred due to the formation of a liquid phase in nitrogen.


Oxygen Nitrogen Atmosphere Liquid Phase Partial Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Komatsu, K. Imai, R. Sato, K. Matusita andT. Yamashita,Jpn J. Appl. Phys. 27 (1988) L550.Google Scholar
  2. 2.
    D. G. Hinks, L. Soderholm, D. W. Capone Ii, B. Dabrowski, A. W. Mitchell andD. Shi,Appl. Phys. Lett. 53 (1988) 423.Google Scholar
  3. 3.
    T. Komatsu andK. Matusita,Thermochim. Acta 174 (1991) 131.Google Scholar
  4. 4.
    M. Onishi, T. Kohgo, Y. Chigusa, M. Kyoto andM. Watanabe,Jpn J. Appl. Phys. 30 (1991) L988.Google Scholar
  5. 5.
    T. Komatsu, C. Hirose, N. Tamoto, R. Sato andK. Matusita,Chem. Express 6 (1991) 611.Google Scholar
  6. 6.
    M. Tatsumisago, S. Tsuboi, N. Tohge andT. Minami,Appl. Phys. Lett. 57 (1990) 2940.Google Scholar
  7. 7.
    T. Komatsu, R. Sato, H. Meguro, K. Matusita andT. Yamashita,J. Mater. Sci. 26 (1991) 683.Google Scholar
  8. 8.
    Z. Zheng, M. Colby andJ. D. Mackenzie,J. NonCryst. Solids 127 (1991) 143.Google Scholar
  9. 9.
    R. Sato, T. Komatsu, Y. Kuken, K. Matusita, K. Sawada andM. Hiraoka,ibid.,152 (1993) 150.Google Scholar
  10. 10.
    H. Endo, J. Tsuchiya, N. Kijima, A. Sumiyama, M. Mizuno andY. Oguri,Jpn J. Appl. Phys. 27 (1988) L1906.Google Scholar
  11. 11.
    W. P. Close andF. Tillman,Glass Technol. 10 (1969) 134.Google Scholar
  12. 12.
    E. F. Riebling,Inorg. Chem. 12 (1973) 2213.Google Scholar
  13. 13.
    C. Hirose, T. Komatsu, R. Sato andK. Matusita,J. Mater. Sci. Lett. 10 (1991) 1146.Google Scholar
  14. 14.
    T. G. Holesinger, D. J. Miller andL. S. Chumbley,J. Mater. Res. 7 (1992) 1658.Google Scholar
  15. 15.
    M. R. De Guire, N. P. Bansal andC. J. Kim,J. Am. Ceram. Soc. 73 (1990) 1165.Google Scholar
  16. 16.
    U. Endo, S. Koyama andT. Kawai,Jpn J. Appl. Phys. 27 (1988) L1476.Google Scholar
  17. 17.
    J. Kase, N. Irisawa, T. Moromoto, K. Togano, H. Kumakura, D. R. Dietderich andH. Maeda,Appl. Phys. Lett. 56 (1990) 183.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • T. Komatsu
    • 1
  • Y. Kuken
    • 1
  • R. Sato
    • 1
  • K. Sa Matusita
    • 1
  1. 1.Department of ChemistryNagaoka University of TechnologyKamitomioka-cho, NagaokaJapan

Personalised recommendations