Advertisement

Astrophysics and Space Science

, Volume 129, Issue 1, pp 123–129 | Cite as

Nonlinear shift of wave parameters of whistlers in the ionosphere

  • S. N. Paul
  • G. C. Das
  • A. K. Sur
  • B. Chakraborty
Article

Abstract

The expression for nonlinear shift of a wave number of a whistler wave propagating through the ionosphere has been derived and the results have been discussed. It is seen that nonlinear shift of a wave number of a whistler is significant in some physical situations. From numerical estimations it is observed that wave number shifts of a whistler for both the LCP and RCP waves become significant when the frequency of the waves are nearly equal to the ion-cyclotron frequency.

Keywords

Numerical Estimation Physical Situation Wave Parameter Whistler Wave Number Shift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brinca, A. L.: 1980,Geophys. Res. Letters 7, 901.Google Scholar
  2. Brinca, A. L.: 1981,J. Atmospheric Terrest. Phys. 43, 693.Google Scholar
  3. Chakraborty, B. and Paul, S. N.: 1983,Phys. Fluids 26(8), 2193.Google Scholar
  4. Chakraborty, B., Das, G. C., Sur, A. K., and Paul, S. N.: 1986,Astrophys. Space Sci. 123, 259.Google Scholar
  5. Das, G. C.: 1975,IEEE PS-3, 168.Google Scholar
  6. Das, G. C. and Sur, A. K.: 1986,Astrophys. Space Sci., in press.Google Scholar
  7. Das, G. C., Sur, A. K., and Chakraborty, B.: 1984, Int. Conf. on Plasma Phys., held at Lausanne, Switzerland, on 27 June to 3 July, 1984.Google Scholar
  8. Das, I. M. L.: 1983,Plasma Phys. 25, 1237.Google Scholar
  9. Das, I. M. L. and Singh, R. P.: 1982,J. Geophys. Res. 87, 2369.Google Scholar
  10. Gurnett, D. A. and Brice, N. M.: 1966,J. Geophys. Res. 71, 3639.Google Scholar
  11. Gurnett, D. A., Shawhan, S. D., Brice, N. M., and Smith, R. L.: 1965,J. Geophys. Res. 70, 1665.Google Scholar
  12. Harr, D. T. and Tsytovich, V. N.: 1981,Phys. Reports 73, 175.Google Scholar
  13. Karpman, V. I., Istomin, J. A. N., and Shklyar, D. R.: 1974a,Plasma Phys. 16, 658.Google Scholar
  14. Karpman, V. I., Istomin, J. A. N., and Shklyar, D. R.: 1974b,Planetary Space Sci. 22, 859.Google Scholar
  15. Matsumoto, H.: 1978,A Review Wave Instabilities in Space Plasma, D. Reidel Publ. Co., Dordrecht, Holland.Google Scholar
  16. Matsumoto, H., Hashimoto, K., and Kimura, I.: 1980,J. Geophys. Res. 85, 664.Google Scholar
  17. Murtaza, G. and Shukla, P. K.: 1984,Phys. Letters 104A, 382.Google Scholar
  18. Nunn, D.: 1984,Planetary Space Sci. 32, 325.Google Scholar
  19. Singh, S. N. and Tolpadi, S. K.: 1975,J. Geophys. Res. 80, 694.Google Scholar
  20. Singh, S. N., Tiwari, S. N., and Tolpadi, S. K.: 1976,J. Geophys. Res. 81, 1327.Google Scholar
  21. Smith, J.: 1965,J. Geophys. Res. 70, 53.Google Scholar
  22. Spatschek, K. H., Yu, M. Y., and Shukla, P. K.: 1976,J. Geophys. Res. 81, 1413.Google Scholar
  23. Thomson, N. R.: 1976,Planetary Space Sci. 24, 447.Google Scholar
  24. Vomvoridis, J. L. and Denavit, J.: 1980,Phys. Fluids 23, 174.Google Scholar

Copyright information

© D. Reidel Publishing Company 1987

Authors and Affiliations

  • S. N. Paul
    • 1
  • G. C. Das
    • 1
  • A. K. Sur
    • 1
  • B. Chakraborty
    • 1
  1. 1.Plasma Physics Group, Department of MathematicsJadavpur UniversityCalcuttaIndia

Personalised recommendations