Advertisement

Mechanics of stress corrosion fracture

  • G. P. Cherepanov
Physicochemical Theory of Deformation and Failure
  • 46 Downloads

Conclusion

It should be emphasized that the influence of the environment is sometimes very substantial even under normal atmospheric conditions, due to the presence of moisture. Sometimes there is a combination of hydrogen embrittlement and electrochemical corrosion mechanisms, leading to characteristic linearconstant diagrams (hydrogen embrittlement prevails in the linear sector, and electrochemical corrosion in the sector where KI = const).

A theoretical description of crack growth in metals exposed to various active environmental constituents is given in [5]. Local hydrogen absorption and local electrochemical corrosion at the crack tip are the most important (practical) mechanisms of subcritical crack growth [5]; [39–44] are also devoted to theoretical study of the latter mechanisms.

Keywords

Hydrogen Atmospheric Condition Hydrogen Absorption Stress Corrosion Theoretical Description 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    Collection “Corrosion” [in Russian], Vols. 1–4, Mir (1972).Google Scholar
  2. 2.
    H. L. Logan, Stress Corrosion of Metals, Wiley (1966).Google Scholar
  3. 3.
    G. V. Karpenko and I. I. Vasilenko, Stress Corrosion Cracking in Steels [in Russian], Tekhnika (1971).Google Scholar
  4. 4.
    V. V. Panasyuk, Ultimate Equilibrium in Brittle Bodies with Cracks [in Russian], Naukova Dumka (1968).Google Scholar
  5. 5.
    G. P. Cherepanov, Mechanics of Brittle Fracture [in Russian], Nauka (1973).Google Scholar
  6. 6.
    Fracture (an Advanced Treatise), Vols. 1–7, ed. H. Liebowitz, Academic Press (1968–1971).Google Scholar
  7. 7.
    H. H. Johnson and P. S. Paris, J. Eng. Fract. Mech.,1, No. 3 (1968).Google Scholar
  8. 8.
    H. H. Johnson, Fracture, Vol. 3, Academic Press (1971).Google Scholar
  9. 9.
    B. F. Brown, Metallurg. Revs.,13, 171 (1968).Google Scholar
  10. 10.
    R. P. Wei, J. Eng. Fract. Mech.,1, 633 (1970).Google Scholar
  11. 11.
    V. Z. Parton and G. P. Cherepanov, in: Mechanics in the USSR over Fifty Years [in Russian], Vol. 3, Nauka (1972).Google Scholar
  12. 12.
    H. H. Johnson and A. M. Willner, Applied Mater. Res.,4, 34 (1965).Google Scholar
  13. 13.
    R. P. Wei et al., Proc. Symposium on Fatigue Crack Propagation, ASTM, Philadelphia (1964), p. 460.Google Scholar
  14. 14.
    D. E. Piper et al., ASM Trans. Q.,57, 658 (1966).Google Scholar
  15. 15.
    T. C. Chisholm and P. F. Langstone, Metallurgia,83, 97 (1971).Google Scholar
  16. 16.
    J. A. Feeney and M. J. Blackburn, Metal. Trans.,1, 3308 (1970).Google Scholar
  17. 17.
    G. J. Petak, J. Eng. Fract. Mech.,4, 347 (1972).Google Scholar
  18. 18.
    H. Nichols and W. Rostoker, Sensitivity of Mechanical Properties to Environmental Action [Russian translation], Mir (1969).Google Scholar
  19. 19.
    V. I. Loboiko, I. I. Vasilenko, S. Ya. Yarema, et al., Fiz.-Khim. Mekhan. Mat., No. 1 (1972).Google Scholar
  20. 20.
    G. L. Hanna et al., ASM Trans. Q.,57, 658 (1964).Google Scholar
  21. 21.
    R. P. Wei, Intern. J. Fract. Mech.,4, 159 (1968).Google Scholar
  22. 22.
    J. M. Barsom, E. J. Imhof, and S. T. Rolfe, Engng. Fract. Mech.,4, 301 (1971).Google Scholar
  23. 23.
    C. D. Beachen, Met. Trans.,3, 437 (1972).Google Scholar
  24. 24.
    B. F. Brown, J. Electrochem. Soc.,116, 218 (1969).Google Scholar
  25. 25.
    G. G. Hancock and H. H. Johnson, Trans. Metal. Soc., AIME,236, 513 (1966).Google Scholar
  26. 26.
    H. J. Magnani, Corrosion,26, 406 (1970).Google Scholar
  27. 27.
    C. S. Carter, Metal. Trans.,2, 1621 (1971).Google Scholar
  28. 28.
    C. S. Carter, J. Eng. Fract. Mech.,3, 1 (1971).Google Scholar
  29. 29.
    A. J. Stavros and H. W. Paxton, Metal. Trans.,1, 3049 (1970).Google Scholar
  30. 30.
    H. P. Leckie, Proc. of Conf. on Fundamental Aspects of Stress Corrosion Cracking, Ohio State Univ., Dep. Met. Eng., Houston, Texas (1969), p. 411.Google Scholar
  31. 31.
    E. N. Pugh, J. A. S. Green, and P. W. Slattery, Fracture (1969); Proc. 2nd Intern. Conf. Fracture, Brighton, April 1969, London.Google Scholar
  32. 32.
    M. V. Hyatt, Corrosion,27, 49 (1971).Google Scholar
  33. 33.
    A. M. Sullivan, Engng. Fract. Mech.,4, 65 (1972).Google Scholar
  34. 34.
    A. J. Sedriks, J. A. S. Green, and D. L. Novak, Metal. Trans.,1, 1815 (1970).Google Scholar
  35. 35.
    H. P. Chu and G. A. Wacker, J. Basic Eng., Ser. D,91, 1 (1969).Google Scholar
  36. 36.
    J. A. S. Green and A. J. Sedriks, Metal. Trans.,2, 1807 (1971).Google Scholar
  37. 37.
    B. F. Brown, J. Mater.,5, 786 (1970).Google Scholar
  38. 38.
    R. J. Bucci and P. C. Paris, Corrosion,27, 525 (1971).Google Scholar
  39. 39.
    G. P. Cherepanov, L. V. Ershov, and G. G. Kuz'min, Corrosion,29, 100 (1973).Google Scholar
  40. 40.
    G. P. Cherepanov, Summaries of Papers at the Thirteenth International Congress on Theoretical and Applied Mechanics [in Russian], Nauka (1972).Google Scholar
  41. 41.
    G. P. Cherepanov, Proc. 3rd Intern. Congr. Fracture, Munich (1973).Google Scholar
  42. 42.
    G. P. Cherepanov, Summaries of Papers at Symposium on Fracture and Fatigue, Washington (1972).Google Scholar
  43. 43.
    G. P. Cherepanov, Eng. Fract. Mech.,5, (1973).Google Scholar
  44. 44.
    G. P. Cherepanov, Corrosion,29 (1973).Google Scholar

Copyright information

© Plenum Publishing Corporation 1975

Authors and Affiliations

  • G. P. Cherepanov
    • 1
  1. 1.Moscow Mining InstituteUSSR

Personalised recommendations