Skip to main content
Log in

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  1. N. V. Oleinik and Nyu Van Kust, Prob. Proch., No. 1, 72–78 (1976).

    Google Scholar 

  2. T. S. Rolfe and S. P. Novak, in: Review of Developments in Plain Strain Fracture Toughness Testing, ASTM STP 463 (1970), pp. 124–159.

    Google Scholar 

  3. A. Priest and N. Mei, in: Fracture Toughness of High-Strength Materials [Russian translation], Metallurgiya (1973), pp. 161–194.

  4. J. M. Krafft, Appl. Mater. Research, No. 4, pp. 88–101 (1964).

    Google Scholar 

  5. Sh. Kryussar et al., in: The Atomic Mechanism of Fracture [in Russian], Metallurgizdat (1963).

  6. W. A. Spitzig, in: Electron Microfractography, ASTM STP 453 (1969), pp. 90–110.

    Google Scholar 

  7. W. W. Gerberich and C. E. Hartbower, Trans. Quart. ASM,61, No. 1, 57 (1968).

    Google Scholar 

  8. K. Firth and K. D. Garwoold, in: Fracture Toughness High Strength Mat. Theory and Practice, London (1970).

  9. R. C. Bates, W. G. Clark, and D. M. Moon, in: Electron Microfractograph Symposium. Eleventh Annual Meeting of the American Society of Testing and Materials, San Francisco, California, 1968, Philadelphia, Pennsylvania (1969).

  10. G. T. Hahn and A. R. Rosenfield, in: Application Related Phenomena in Titanium Alloys, ASTM STP 432 (1968), pp. 6–32.

    Google Scholar 

  11. R. P. Wei, in: Fracture Toughness Testing in Alloy Developments, ASTM STP 381 (1965), pp. 279–292.

    Google Scholar 

  12. J. R. Rice and M. A. Johnson, in: Inelastic Behavior of Solids, McGraw-Hill, New York (1970).

    Google Scholar 

  13. G. T. Hahn and A. R. Rosenfield, Met. Trans.,6A, No. 4, 653–671 (1975).

    Google Scholar 

  14. A. H. Priest, in: Effect of Second-Phase Particles on the Mechanical Properties, ISI, London (1971), p. 134.

    Google Scholar 

  15. R. M. N. Pelioux, Eng. Fract. Mech.,1, 697 (1970).

    Google Scholar 

  16. P. F. Thomason, Int. J. Fract. Mech.,7, No. 7, 409–419 (1971).

    Google Scholar 

  17. V. Weiss, in: Mechanical Behavior of Materials, JSMS,1, 458–474 (1972).

    Google Scholar 

  18. J. Marin, B. H. Ulrich, and W. P. Hugles, Nat. Advis. Comm. Aeronaut., Tech. Note No. 2425 (1951), p. 17.

    Google Scholar 

  19. Z. V. Weiss, in: Fracture, Vol. 3 [Russian translation], Mir (1976), p. 263.

  20. N. Neuber, Konstruction,20, 245 (1968).

    Google Scholar 

  21. V. Weiss, in: Proceedings of the Third International Conference on Fracture, Munich (1973), p. 111.

  22. V. V. Panasyuk, A. E. Andreikov, and S. E. Kovchik, Fiz.-Khim. Mekh. Mater., No. 2, 120–122 (1977).

    Google Scholar 

  23. G. P. Cherepanov, Prikl. Mat. Mekh.,40, No. 4, 720–728 (1976).

    Google Scholar 

  24. S. V. Serensen, Resistance of Materials to Fatigue and Brittle Fracture [in Russian], Atomizdat (1975).

  25. G. Y. Lai, W. E. Wood, R. A. Clark, V. F. Zackoy, and E. R. Parker, Met. Trans.,5, No. 7, 1663–1670 (1974).

    Google Scholar 

  26. O. N. Romaniv, A. N. Tkach, Ya. N. Gladkii, and Yu. V. Zima, Fiz.-Khim. Mekh. Mater., No. 5, 41–48 (1976).

    Google Scholar 

  27. J. M. Barsom, in: Proceedings of the First National Congress for Pressure Vessels and Piping, San Francisco, California (1971), p. 37.

  28. J. Marin, J. H. Faupel, and V. F. Dutton, Nat. Advis. Comm. Aeronaut., Tech. Note No. 1536 (1948).

  29. H. W. Liu, in: Proceedings of the First International Conference on Fracture, Vol. 1, Sendai (1965), p. 191.

    Google Scholar 

  30. G. R. Irwin et al., Technology of Steel Pressure Vessels for Water-Cooled Nuclear Reactors (1968), p. 54.

  31. T. R. Wilshaw, C. A. Rau, and A. S. Tetelmen, Eng. Fract. Mech.,1, 191–211 (1968).

    Google Scholar 

  32. A. S. Tetelmen, T. R. Wilshaw, and C. A. Rau, Int. J. Fract. Mech.,4, No. 2, 147–157 (1968).

    Google Scholar 

  33. J. F. Knott, J. Iron and Steel Inst.,204, 104–112 (1966).

    Google Scholar 

  34. J. R. Griffith and D. R. J. Owen, J. Mech. Phys. Solids,19, 419 (1971).

    Google Scholar 

  35. R. Hill, Mathematical Theory of Plasticity, Oxford University Press, London (1950).

    Google Scholar 

  36. F. A. McClintock and G. R. Irwin, in: Applied Problems in Fracture Toughness [Russian translation], Mir (1968), pp. 143–186.

  37. A. S. Tetelmen and T. R. Wilshaw, Proceedings of the Second International Conference on Fracture, Brighton (1969), p. 219.

  38. A. H. Cottrell, Proc. R. Soc.,A285, 37 (1965).

    Google Scholar 

  39. G. Irwin, Appl. Mater. Research,3, No. 4, 65 (1964).

    Google Scholar 

  40. A. K. Shoemaker, Fracture Toughness Testing, ASTM STP 381 (1965), p. 26.

    Google Scholar 

  41. J. Malkin and A. S. Tetelmen, Eng. Fract. Mech.,3, 151–167 (1971).

    Google Scholar 

  42. A. P. Gulyaev, Zavod. Lab., No. 4, 473–475 (1967).

    Google Scholar 

  43. R. O. Ritchie, J. F. Knott, and J. R. Rice, J. Mech. Phys. Solids,21, 395–410 (1973).

    Google Scholar 

  44. N. Levy, P. V. Marcal, W. J. Ostergren, and J. R. Rice, Int. J. Fracture Mech.,7, 143 (1971).

    Google Scholar 

  45. J. R. Rice and G. F. Rosengren, J. Mech. Phys. Solids,16, 1–12 (1968).

    Google Scholar 

  46. J. W. Hutchinson, J. Mech. Phys. Solids,16, 13 (1968).

    Google Scholar 

  47. D. A. Curry and J. F. Knott, Met. Sci. J., No. 1, 1–6 (1976).

    Google Scholar 

  48. R. O. Ritchie, B. Francis, and W. L. Server, Met. Trans.,A7, No. 6, 831–838 (1976).

    Google Scholar 

  49. G. T. Hahn, R. G. Hoagland, and A. R. Rosenfield, Met. Trans.,2, No. 2, 537–541 (1971).

    Google Scholar 

  50. A. K. Shoemaker and S. T. Rolfe, Theoretical Principles of Engineering Calculations, No. 3, 201–209 (1969).

    Google Scholar 

  51. O. M. Romaniv, Yu. V. Zima, and G. V. Karpenko, Electron Fractography of Hardened Steels [in Ukrainian], Naukova Dumka (1974).

  52. W. W. Gerberich and P. L. Hemmings, Trans. ASM,62, 540 (1969).

    Google Scholar 

  53. A. J. Brothers, H. Hill, et al., in: Applications of Electron Microfractography to Materials Research, ASTM STP 493 (1971), pp. 3–19.

    Google Scholar 

  54. J. F. Knott, Fundamentals of Fracture Mechanics, Butterworths, London (1973).

    Google Scholar 

  55. G. J. Oates, J. Iron and Steel Inst.,206, 930–935 (1968).

    Google Scholar 

  56. A. A. Griffith, Phil. Trans. R. Soc., Ser. A,221, 163–198 (1920).

    Google Scholar 

  57. O. N. Romaniv, Yu. V. Zima, and Yu. D. Petrina, Fiz.-Khim. Mekh. Mater., No. 1, 3–8 (1973).

    Google Scholar 

  58. S. A. Saltykov, Stereometric Metallography [in Russian] (1958).

  59. L. I. Tushinskii and L. B. Tikhomirova, Fiz.-Khim. Mekh. Mater., No. 5, 10–23 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Fiziko-Khimicheskaya Mekhanika Materialov, Vol. 13, No. 5, pp. 5–22, September–October, 1977.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romaniv, O.N., Tkach, A.N. Micromechanical modeling of fracture toughness of metals and alloys. Mater Sci 13, 469–483 (1978). https://doi.org/10.1007/BF00717544

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00717544

Keywords

Navigation