Metal Science and Heat Treatment

, Volume 31, Issue 10, pp 790–793 | Cite as

Distribution of rhenium and tungsten in cast and wrought molybdenum alloys

  • M. M. Kantor
  • C. B. Maslenko
  • V. V. Khangulov
  • N. I. Kazakova
  • A. V. Abramyan
  • B. D. Belyasov
Technical Information
  • 20 Downloads

Conclusions

  1. 1.

    In alloys of the Mo-Re system liquation of rhenium is low (K=1.1) and it does not depend/either on the rhenium content or on the set of deoxidizing and microalloying additions contained in the alloy.

     
  2. 2.

    Liquation of tungsten in alloys of the Mo-W system is greater (K=−1.3), but it also does not depend on its content in the alloy.

     
  3. 3.

    In alloys of the system Mo-W-Re after single remelting liquation of rhenium is the same throughout the volume of the ingot. The degree of rhenium liquation in ternary alloy is the same as in binary alloys of the Mo-Re system.

     
  4. 4.

    The degree of tungsten liquation in an ingot of an alloy of the Mo-W-Re system after single-stage remelting is considerably higher in the central zone of an ingot than in the outer zones, and it exceeds the degree of its liquation in binary alloys of the Mo-W system. After secondary remelting tungsten liquation in ternary alloys is the same as in binary alloys, and it is also the same throughout the whole volume.

     
  5. 5.

    Inhomogeneous distribution of tungsten and rhenium in alloy of the Mo-W-Re system arising as a result of its nonuniform crystallization is also retained after ingot deformation.

     

Keywords

Crystallization Tungsten Molybdenum Binary Alloy Rhenium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    N. N. Morgunova, A. V. Abramyan, and N. I. Kazakova, "Effect of rhenium on the cold brittleness threshold for molybdenum," Metalloved. Term. Obrab. Met., No. 6, 32–37 (1987).Google Scholar
  2. 2.
    N. N. Morgunova, B. A. Klypin, V. A. Boyashinov, et al. Molybdenum Alloys [in Russian], Metallurgiya, Moscow (1975).Google Scholar
  3. 3.
    N. N. Morgunova, L. N. Demina, and N. I. Kazakova, "Properties of alloy TsM-10," Metalloved. Term. Obrab. Met., No. 12, 31–34 (1986).Google Scholar
  4. 4.
    I. N. Gorlikov and S. B. Maslenkov, Dendrite Liquation in Steels and Alloys [in Russian], Metallurgiya, Moscow (1977).Google Scholar
  5. 5.
    N. V. Ageev, D. V. Ingatov, and M. M. Kantor, "Texture of columnar crystals and crystallographic orientation of dendrites in a molybdenum ingot," Dokl. Akad. Nauk SSSR,184, No. 5, 1088–1090 (1969).Google Scholar
  6. 6.
    N. V. Ageev, D. V. Ignatov, M. S. Model', et al., "Effect of carbon distribution on the structure of molybdenum and its alloys," in: Alloying and Properties of High Temperature Alloys [in Russian], Nauka, Moscow (1971).Google Scholar
  7. 7.
    N. V. Ageev, D. V. Ignatov, M. M. Kantor, et al., "Effect of carbon on the fine structure of cast molybdenum," Izv. Akad. Nauk SSSR, Met., No. 1, 168–173, (1973).Google Scholar
  8. 8.
    N. W. Agejew, M. M. Kantor, M. S. Model, and M. S. Makunin, "Kohlenstoffverteilung in geogossenem und in niedriglegeiretem Molybdän," Praktische Metallographie15, No. 7, 342–355 (1978).Google Scholar
  9. 9.
    R. P. Elliot, Structure of Binary Alloys [Russian translation], Vol 2, Metallurigya, Moscow (1970).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • M. M. Kantor
  • C. B. Maslenko
  • V. V. Khangulov
  • N. I. Kazakova
  • A. V. Abramyan
  • B. D. Belyasov

There are no affiliations available

Personalised recommendations