Foundations of Physics

, Volume 5, Issue 2, pp 197–215 | Cite as

Superposition in quantum and relativity physics—An interaction interpretation of special relativity theory: Part III

  • Richard Schlegel
Article

Abstract

With the interaction interpretation, the Lorentz transformation of a system arises with selection from a superposition of its states in an observation-interaction. Integration of momentum states of a mass over all possible velocities gives the rest-mass energy. Static electrical and magnetic fields are not found to form such a superposition and are to be taken as irreducible elements. The external superposition consists of those states that are reached only by change of state of motion, whereas the internal superposition contains all the states available to an observer in a single inertial coordinate system. The conjecture is advanced that states of superposition may only be those related by space-time transformations (Lorentz transformations plus space inversion and charge conjugation). The continuum of external and internal superpositions is examined for various masses, and an argument for the unity of the super-positions is presented.

Keywords

Magnetic Field Coordinate System Special Relativity Lorentz Transformation Charge Conjugation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Schlegel,Found. Phys. 3(2), 169 (1973).Google Scholar
  2. 2.
    R. Schlegel,Found. Phys. 3(3), 277 (1973).Google Scholar
  3. 3.
    R. Schlegel,Completeness in Science (Appleton-Century-Crofts, New York, 1967).Google Scholar
  4. 4.
    C. Møller,The Theory of Relativity (Oxford Univ. Press, 1952).Google Scholar
  5. 5.
    M. Abraham and R. Becker,The Classical Theory of Electricity and Magnetism, trans. by J. Dougall (Blackie, London, 1937), Chapter XII.Google Scholar
  6. 6.
    J. R. Reitz and F. J. Milford,Foundations of Electromagnetic Theory (Addison-Wesley, Reading, Massachusetts, 1967), Section 17-2.Google Scholar
  7. 7.
    A. Einstein,Ann. Physik 17, 891 (1905), Section 6.Google Scholar
  8. 8.
    W. Heitler,The Quantum Theory of Radiation, 3rd ed. (Oxford Univ. Press, 1954).Google Scholar
  9. 9.
    N. Bohr,Atomic Theory and the Description of Nature (Cambridge Univ. Press, 1934), p. 10.Google Scholar
  10. 10.
    G. Reece,Int. J. Theor. Phys. 7, 81 (1973); E. P. Wigner, inFoundations of Quantum Mechanics, B. D'Espagnat, ed. (Academic Press, New York, 1971), p. 1.Google Scholar
  11. 11.
    P. A. M. Dirac,The Principles of Quantum Mechanics, 3rd ed. (Oxford Univ. Press, 1947), p. 201.Google Scholar
  12. 12.
    J. L. Powell and B. Crasemann,Quantum Mechanics (Addison-Wesley, Reading, Massachusetts, 1961).Google Scholar
  13. 13.
    J. J. Sakurai,Invariance Principles and Elementary Particles (Princeton Univ. Press, 1964).Google Scholar
  14. 14.
    E. Schrödinger,Naturwiss. 23, 807, 823, 844 (1935).Google Scholar
  15. 15.
    N. Rosen,Am. J. Phys. 32, 597 (1964).Google Scholar
  16. 16.
    E. P. Wigner, inSymmetries and Reflections: Scientific Essays of Eugene P. Wigner, W. J. Moore and M. Scriven, eds. (Indiana Univ. Press, Bloomington, 1967), pp. 171–184.Google Scholar
  17. 17.
    R. Schlegel,Am. J. Phys. 22, 77 (1954).Google Scholar
  18. 18.
    W. Heisenberg,The Physical Principles of Quantum Theory, trans. by C. Eckart and F. C. Hoyt (Dover, New York), Section 11, Appendix.Google Scholar
  19. 19.
    R. Schlegel,Synthèse 21, 65 (1970).Google Scholar

Copyright information

© Plenum Publishing Corporation 1975

Authors and Affiliations

  • Richard Schlegel
    • 1
  1. 1.Department of PhysicsMichigan State UniversityEast Lansing

Personalised recommendations