Advertisement

Acta Neuropathologica

, Volume 47, Issue 2, pp 123–130 | Cite as

Postnatal vascular growth in the neocortex of normal and protein-deprived rats

Morphometric studies
  • N. G. Conradi
  • S. Eins
  • J. -R. Wolff
Original Works

Summary

The postnatal vascular growth in the neocortical area 18 of normal and pre- and postnatally protein-deprived rats was examined. For control rats the specific length, the specific surface and the volume fraction of vessels increased rapidly between 7 and 20 days of age. Thereafter, only a minor increase was seen. In protein-deprived rats there was no increase in the specific length of vessels between 7 and 10 days of age and this variable was still reduced at 30 days of age compared to controls. This reduction was due to a decrease in the specific length of thin vessels (Ø<8.25 μ) whereas the specific length of wider vessels was not affected by the protein deprivation. There were no significant differences in the specific surface or volume fraction of vessels between control and protein-deprived rats. These findings indicate an adaptive increase in luminal diameter of vessels in the protein deprived rats during postnatal development. At 90 days of age no significant differences between vascular variables of control and protein-deprived rats were seen.

Key words

Rat Protein deprivation Neocortex Vessels Morphometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altman, J.: Postnatal development of the cerebellar cortex. Parts I, II and III. J. Comp. Neurol.145, 353–514 (1972)Google Scholar
  2. Beas, R., Mönckeberg F., Harawitz, J.: The response of the thyroid gland to the thyroid stimulating hormone (TSH) in infants with malnutrition. Pediatrics38, 1003–1008 (1966)Google Scholar
  3. Bär, Th., Wolff, J.-R.: Quantitative Beziehungen zwischen der Verzweigungsdichte und Länge von Kapillaren im Neocortex der Ratte während der postnatalen Entwicklung. Z. Anat. Entwickl. Gesch.141, 207–221 (1973)Google Scholar
  4. Bär, Th., Eins, S., Nicksch, E.: Morphometrische Untersuchungen an Hirnkapillaren von Ratten nach chronischem Sauerstoffmangel. Verh. Anat. Ges.69, 131–138 (1975)Google Scholar
  5. Caley, D. M., Maxwell, D. S.: Development of the blood vessels and extra cellular spaces during postnatal maturation of rat cerebral cortex. J. Comp. Neurol138, 31–48 (1970)Google Scholar
  6. Campbell, A. C. F.: Variation in vascularity and oxidase content in different regions of the brain of the cat. Arch. Neurol. Psychiat. (Chicago)41, 223–242 (1939)Google Scholar
  7. Conel, J. L.: The postnatal development of the human cerebral cortex, Vol. 6. The cortex of the twenty-four month infant. Cambridge, MA: Harvard University Press 1959Google Scholar
  8. Conradi, N. G., Eins, S., Wolff, J.-R.: Postnatal vascular growth in cerebellar cortex of normal and protein-deprived rats. Acta Neuropathol. (Berl.)47, 131–137 (1979a)Google Scholar
  9. Conradi, N. G., Engvall, J., Wolff, J.-R.: Angioarchitectonics of rat cerebellar cortex during postnatal development. (in prep.)Google Scholar
  10. Cragg, B. G.: The development of cortical synapses during starvation in the rat. Brain95, 143–150 (1972)Google Scholar
  11. Craigie, E. H.: The comparative anatomy and embryology of the capillary bed of the central nervous system. Proc. Assoc. Res. Nerv. Ment. Dis.18, 3–28 (1938)Google Scholar
  12. Deo, M. G., Ramalingaswami, V.: Reaction of the small intestine to induced protein malnutrition in Rhesus Monkeys — a study of cell population kinetics in the jejunum. Gastroenterology49, 150–157 (1965)Google Scholar
  13. Dunning, H. S., Wolff, H. G.: The relative vascularity of various parts of the central and peripheral nervous system in the cat and its relation to function. J. Comp. Neurol.67, 433–450 (1937)Google Scholar
  14. Eayrs, J. T.: The vascularity of the cerebral cortex in normal and cretinous rats. J. Anat.88, 164–173 (1954)Google Scholar
  15. Eins, S., Bär, Th.: Orientation distribution of blood vessels in central nervous tissue. Prakt. Metallogr.8, 381–388 (1978)Google Scholar
  16. Eins, S., Wilhelms, E.: Assessment of preparative volume changes in central nervous tissue using automatic image analysis. Microscope24, 29–38 (1976)Google Scholar
  17. Farkas-Bargeton, E., Diebler, M. F.: A topographical study of enzyme maturation in human cerebral neocortex: A histochemical and biochemical study. In: Architectonics of the cerebral cortex. Brazier, M. A. B., Petsche, H. (eds.). New York: Raven Press 1978Google Scholar
  18. Fox, W. M., Ottilie, I. R., Himwich, W. A.: The postatal development of neocortical neurons in the dog. J. Comp. Neurol.127, 199–206 (1966)Google Scholar
  19. Fox, C. A., Hillman, D. E., Siegesmund, K. A., Dutta, C. R.: The primate cerebellar cortex: A Golgi and electron microscopic study. Prog. Brain Res.25, 174–225 (1967)Google Scholar
  20. Friede, R. L.: Histochemical investigation of succinic dehydrogenase in the central nervous system. I. Distribution in the developing rat's brain. J. Neurochem.4, 101–111 (1959)Google Scholar
  21. Gambetti, P., Autilio-Gambetti, L., Rizzuto, M., Shafer, B., Pfaff, L.: Synapses and malnutrition: Quantitative ultrastructural study of rat cerebral cortex. Exp. Neurol.43, 464–473 (1974)Google Scholar
  22. Gyllensten, L.: Influence of oxygen exposure on the postnatal vascularization of the cerebral cortex in mice. Acta Morphol. Neerl. Scand.2, 289–310 (1959a)Google Scholar
  23. Gyllensten, L.: Postnatal development of the visual cortex in darkness (mice). Acta Morphol. Neerl. Scand.2, 331–345 (1959b)Google Scholar
  24. Heggeness, F. W.: Nutritional status and physiological development of the preweaning rat. Am. J. Physiol.203, 545–549 (1962)Google Scholar
  25. Horstmann, E.: Abstand und Durchmesser der Kapillaren im Zentralnervensystem verschiedener Wirbeltierklassen. In: Structure and function of the cerebral cortex. Tower, D. B., Schadé, J. F. (eds.), p. 59–63. Amsterdam: Elsevier 1960Google Scholar
  26. Katiyar, G. P., Agarwal, K. N., Shanker, R., Nagchaudhuri, J.: Effect of protein energy deprivation on the brain enzymes of glutamic acid in preweanling rats. Nutr. Metab.20, 396–403 (1976)Google Scholar
  27. Kornguth, S. E., Scott, G.: The role of climbing fibres in the formation of Purkinje cell dendrites. J. Comp. Neurol.146, 61–82 (1972)Google Scholar
  28. Krieg, W. J. S.: Connection of the cerebral cortex. I. The albino rat. A. Topography of the cortical areas. J. Comp. Neurol.84, 221–275 (1946)Google Scholar
  29. Leduc, E. H.: Mitotic activity in the liver of the mouse during inanition followed by refeeding with different levels of protein. Am. J. Anat.81, 397–429 (1949)Google Scholar
  30. Marin-Padilla, M.: Prenatal and early postnatal ontogenesis of the human motor cortex: A Golgi study. I. The sequential development of the cortical layers. Brain Res.23, 167–183 (1970)Google Scholar
  31. Muzzo, S., Gregory, T., Gardner, L. I.: Oxygen consumption by brain mitochondria of rats malnourished in utero. J. Nutr.103, 314–317 (1973)Google Scholar
  32. Palay, S. L., Chan-Palay, V.: Cerebellar cortex. New York: Springer 1974Google Scholar
  33. Patel, A. J., Balazs, R., Johnson, A. L.: Effect of undernutrition on cell formation in the rat brain. J. Neurochem.20, 1151–1165 (1973)Google Scholar
  34. Rajalakshmi, R., Parameswaran, M., Telang, S. D., Ramakrishnan, C. V.: Effects of undernutrition and protein deficiency on glutamate dehydrogenase and decarboxylase in rat brain. J. Neurochem.23, 129–133 (1974)Google Scholar
  35. Richardsson, K. C., Jarrett, L., Finke, E. H.: Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technol.35, 313–323 (1960)Google Scholar
  36. Saunders, R. L. de C. H., Bell, M. A.: X-ray microscopy and histochemistry of the human cerebral blood vessels. J. Neurosurg.35, 128–140 (1971)Google Scholar
  37. Seil, F. Z., Kelly, J. M., Leiman, A. L.: Anatomical organization of cerebral neocortex in tissue culture. Exp. Neurol.45, 435–450 (1974)Google Scholar
  38. Shoemaker, W. J., Bloom, F. E.: Effect of undernutrition on brain morphology. In: Nutrition and the brain, Vol. 2. Wurtman, R. J., Wurtman, J. J. (eds.), New York: Raven Press 1977Google Scholar
  39. Siassi, F., Siassi, B.: Differential effects of protein-calorie restriction and subsequent repletion on neuronal and non neuronal components of cerebral cortex in newborn rats. J. Nutr.103, 1625–1633 (1973)Google Scholar
  40. Tongiani, R.: Hepatocyte classes during liver atrophy due to starvation in the golden hamster. Z. Zellforsch.122, 467–478 (1971)Google Scholar
  41. Wechsler, W.: Die Entwicklung der Gefäße und perivaskulären Gewebsräume im Zentralnervensystem von Hühnern. Z. anat. Entwickl. Gesch.124, 367–395 (1965)Google Scholar
  42. Wiebecke, B., Eder, M., Heylowitz, R.: Änderungen der Epithelregeneration der Dünndarmschleimhaut der Maus im Hungerzustand. Verh. Dtsch. Ges. Pathol.52, 446–448 (1970)Google Scholar
  43. Wolff, J.-R.: Ontogenetic aspects of cortical architecture: Lamination. In: Architectonics of the cerebral cortex. Brazier, M. A. B., Petsche, H. (eds.), New York: Raven Press 1978Google Scholar
  44. Woodward, D. Z., Hoffer, B. J., Lapham, L. W.: Postnatal development ef electrical and enzyme histochemical activity in Purkinje cells. Exp. Neurol.23, 120–139 (1969)Google Scholar
  45. Woolsley, T. A., van der Loos, H.: The relationship between glycolytic and mitochondrial enzymes in the developing rat brain. J. Neurochem.19, 223–227 (1970)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • N. G. Conradi
    • 1
  • S. Eins
    • 2
  • J. -R. Wolff
    • 2
  1. 1.Neuropathological Laboratory, Institute of PathologyUniversity of GothenburgGothenburgSweden
  2. 2.Department of Neurobiology, NeuroanatomyMax Planck Institute for Biophysical ChemistryGöttingenFederal Republic of Germany

Personalised recommendations