An effective hypothesis proposed for evaluating the effect of corrosive media on the cyclic crack resistance of metals and alloys

  • O. N. Romaniv
  • Ya. N. Gladkii
  • G. N. Nikiforchin


Crack Resistance Corrosive Medium Cyclic Crack Resistance Effective Hypothesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    V. I. Nikitin, Physicochemical Phenomena during the Reaction of Liquid Metals with Solid Metals [in Russian], Atomizdat, Moscow (1967).Google Scholar
  2. 2.
    R. P. Wei, ”Some aspects of environment-enhanced fatigue crack growth,“ Eng. Fract. Mech.,1, No. 4, 633–651 (1970).Google Scholar
  3. 3.
    E. J. Imhof and J. M. Barsom, ”Fatigue and corrosion-fatigue crack growth of 4340 steel at various yield strengths,“ in: Progress ir Flaw Growth and Fracture Toughness Testing, ASTM STP 536 (1973), pp. 182–205.Google Scholar
  4. 4.
    C. J. McMahon, Jr., ”Environment assisted fracture in engineering alloys. Part II, Cyclic loading and future work,“ Trans. ASME,H95 No. 3, 142–149 (1973).Google Scholar
  5. 5.
    O. N. Romaniv, Ya. N. Gladkii, and A. N. Kuroshchenov, ”Action of water on fatigue crack kinetics in thermally hardened spring steel,“ Fiz.-Khim. Mekh. Mater., No. 2, 54–59 (1976).Google Scholar
  6. 6.
    R. P. Wei and J. D. Landes, ”Correlation between sustained load and fatigue crack growth in high-strength steels,“ Mat. Res. Stand.,9, No. 7, 25–46 (1969).Google Scholar
  7. 7.
    P. C. Paris, R. J. Bucci, and C. D. Little, ”Fatigue crack propagation of D6ac steel in air and distilled water,“ in: Stress Analysis and Growth of Cracks, ASTM STP 513, Part 1 (1972), pp. 196–217.Google Scholar
  8. 8.
    G. A. Miller, S. J. Hudak, and R. P. Wei, ”The influence of loading variables on environment-enhanced fatigue crack growth in high-strength steel,“ J. Test. Eval.,1, No. 6, 524–531 (1973).Google Scholar
  9. 9.
    O. N. Romaniv, Ya. N. Gladkii, and N. A. Deev, ”Some features of the effect of residual austenite on the fatigue and crack resistance of lightly tempered steels,“ Fiz.-Khim. Mekh. Mater., No. 4, 63–70 (1975).Google Scholar
  10. 10.
    G. N. Nikiforchin, S. I. Ripetskii, I. A. Berezyuk, and N. A. Lenets, ”Equipment for studying the crack resistance of materials during long-term operation in working media,“ Fiz.-Khim. Mekh. Mater., No. 4, 115–116 (1975).Google Scholar
  11. 11.
    O. N. Romaniv, G. N. Nikiforchin, and N. A. Deev, ”Kinetic effects in the mechanics of delayed fracture of high-strength alloys,“ Fiz.-Khim. Mekh. Mater., No. 4, 9–24 (1976).Google Scholar
  12. 12.
    T. W. Crooker and E. A. Lande, ”The influence of salt water on fatigue crack growth in high-strength structural steels,“ in: Effects of Environment and Complex Load History on Fatigue Life, ASTM STP 462 (1970), pp. 258–271.Google Scholar
  13. 13.
    V. A. Dudin and O. N. Romaniv, ”Effect of thermomechanical treatment on the tendency to delayed fracture of chromium-silicon high carbon steels,“ Fiz.-Khim. Mekh. Mater., No. 5, 82–87 (1969).Google Scholar
  14. 14.
    V. I. Vylezhnev, I. I. Sarrak, and R. I. Éntin, Izv. Akad. Nauk SSSR, Met., No. 6, 137–142 (1971).Google Scholar
  15. 15.
    O. N. Romaniv, G. N. Nikiforchin, and N. L. Kuklyak, ”Adsorption reduction of steel crack resistance during static loading,“ Fiz.-Khim. Mekh. Mater., No. 1, 25–31 (1976).Google Scholar
  16. 16.
    W. A. Van der Sluys, ”Mechanisms of environment induced subcritical flaw growth in AISI 4340 steel,“ Eng. Fract. Mech.,1, No. 3, 447–462 (1968).Google Scholar
  17. 17.
    J. D. Landes and R. P. Wei, ”The kinetics of subcritical crack growth under sustained loading,“ Int. J. Fracture,9, No. 3, 277–293 (1973).Google Scholar
  18. 18.
    R. O. Ritchie, ”Influence of impurity segregation on temper embrittlement and on slow fatigue crack growth and threshold behavior in 300-M high-strength steel,“ Met. Trans., 8A, No. 6, 1131–1140 (1977).Google Scholar
  19. 19.
    C. F. Barth, E. A. Steigerwald, and A. R. Troiano, ”Hydrogen permeability and delayed failure of polarized martensitic steels,“ Corrosion,25, No. 9, 353–359 (1969).Google Scholar
  20. 20.
    C. F. Barth and A. R. Troiano, ”Cathodic protection and hydrogen In stress corrosion cracking,“ Corrosion,28, No. 7, 259–263 (1972).Google Scholar
  21. 21.
    E. N. Pugh, ”On the mechanism(s) of stress corrosion cracking,“ in: Metallurgical Society Conferences, Vol. 35, Baltimore, Maryland (1965), pp. 351–403.Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • O. N. Romaniv
    • 1
  • Ya. N. Gladkii
    • 1
  • G. N. Nikiforchin
    • 1
  1. 1.Institute of PhysicomechanicsAcademy of Sciences of the Ukrainian SSRL'vov

Personalised recommendations