Skip to main content
Log in

Apparent molal heat capacities of transfer from H2O to D2O of tetraalkylammonium bromides

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The volumetric specific heats (in J-K−1-cm−3) of tetraalkylammonium bromides (R 4 NBr) have been measured at 25°C in the concentration range 0.02 to 0.4 aquamolal in H 2 O and D 2 O with a differential flow microcalorimeter. The apparent molal heat capacities φc, calculated from the specific heats and known densities, were fitted with the equation φc oc +Acm1/2+Bcm whereA c is the Debye-Hückel limiting slope andB c is an adjustable parameter.

The standard heat capacity of transfer ΔC optr oc (D 2 O oc (H 2 O) of R 4 NBr is positive forR equal ton-propyl andn-butyl and negative for methyl and ethyl. Except for Me 4 NBr in H 2 O, allB c are negative and become more so as the size of the cation increases;B c is usually more negative in D 2 O. These results can be interpreted with a two-state model for water and show that a positive ΔC optr is evidence that the solute is an overall structure maker, while a negative value indicates a net structure breaker. The negativeB c is consistent with the existence of strong solute-solute structural (mostly hydrophobic-hydrophobic and hydrophobic-hydrophilic) interactions in the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. E. Kerwin, Ph.D. thesis, University of Pittsburgh, 1964.

  2. Y. C. Wu and H. L. Friedman,J. Phys. Chem. 70, 166 (1966).

    Google Scholar 

  3. R. L. Kay and D. F. Evans,J. Phys. Chem. 69, 4216 (1965).

    Google Scholar 

  4. C. V. Krishnan and H. L. Friedman,J. Phys. Chem. 74, 2356 (1970).

    Google Scholar 

  5. J. E. Desnoyers, R. Francescon, P. Picker, and C. Jolicoeur,Can. J. Chem. 49, 3460 (1971).

    Google Scholar 

  6. E. Whalley,Trans. Faraday Soc. 53, 1578 (1957).

    Google Scholar 

  7. C. G. Swain and R. F. W. Bader,Tetrahedron 10, 183 (1960).

    Google Scholar 

  8. G. Némethy and H. A. Scheraga,J. Chem. Phys. 41, 680 (1964).

    Google Scholar 

  9. B. E. Conway and L. H. Laliberté,Trans. Faraday Soc. 66, 3032 (1970).

    Google Scholar 

  10. H. S. Frank and W. Y. Wen,Discussions Faraday Soc. 24, 133 (1957).

    Google Scholar 

  11. G. C. Kresheck,J. Chem. Phys. 52, 5966 (1970).

    Google Scholar 

  12. P. Picker, P. A. Leduc, P. R. Philip, and J. E. Desnoyers,J. Chem. Thermodyn. 3, 631 (1971).

    Google Scholar 

  13. R. L. Kay, J. Vituccio, C. Zawoyski, and D. F. Evans,J. Phys. Chem. 70, 2336 (1966);

    Google Scholar 

  14. R. L. Kay,Advan. Chen. Ser. 73, 1 (1968).

    Google Scholar 

  15. K. W. Bunzl,J. Phys. Chem. 71, 1358 (1967).

    Google Scholar 

  16. H. Ruterjans, H. F. Schreiner, V. Sage, and T. H. Ackermann,J. Phys. Chem. 73, 986 (1969).

    Google Scholar 

  17. T. S. Sarma, R. K. Mohanty, and J. C. Ahluwalia,Trans. Faraday Soc. 65, 2333 (1969).

    Google Scholar 

  18. E. M. Arnett and J. J. Campion,J. Am. Chem. Soc. 92, 7097 (1970).

    Google Scholar 

  19. G. Perron and J. E. Desnoyers,J. Chem. Eng. Data 17, 136 (1972).

    Google Scholar 

  20. G. N. Lewis and M. Randall,Thermodynamics, 2nd ed. revised by K. S. Pitzer and L. Brewer (McGraw-Hill, New York, 1961), Chap. 23, pp. 338–339.

    Google Scholar 

  21. V. K. La mer and I. A. Cowperthwaite,J. Am. Chem. Soc. 55, 1004 (1933).

    Google Scholar 

  22. C. G. Malmberg and A. A. Maryott,J. Res. Nat. Bur. St. 56, 1 (1956); C. G. Malmberg,ibid.,60, 609 (1958).

    Google Scholar 

  23. G. S. Kell,J. Chem. Eng. Data 12, 66 (1967).

    Google Scholar 

  24. E. A. Guggenheim and J. E. Prue,Trans. Faraday Soc. 50, 710 (1954).

    Google Scholar 

  25. H. S. Harned and B. B. Owen,The Physical Chemistry of Electrolytic Solution (Reinhold, New York, 1958), 3rd ed., Chap. 5, p. 173.

    Google Scholar 

  26. G. N. Lewis and M. Randall,Thermodynamics, 2nd ed. revised by K. S. Spitzer and L. Brewer (McGraw-Hill, New York, 1961), Appendix 4, p. 640.

    Google Scholar 

  27. N. Burns, Ph.D. Thesis, University of Alberta, 1968.

  28. W. Kauzmann,Advan. Protein Chem. 14, 1 (1959).

    Google Scholar 

  29. D. Eisenberg and W. Kauzmann,The Structure and Properties of Water (Oxford Press, New York, 1969), p. 181.

    Google Scholar 

  30. A. Ben-Naim,Trans. Faraday Soc. 66, 2749 (1970).

    Google Scholar 

  31. C. M. Criss and J. W. Cobble,J. Am. Chem. Soc. 86, 5390 (1964).

    Google Scholar 

  32. R. M. Noyes,J. Am. Chem. Soc. 86, 971 (1964).

    Google Scholar 

  33. J. E. Desnoyers and G. Perron,J. Solution Chem. 1, 199 (1972).

    Google Scholar 

  34. M. E. Friedman and H. A. Scheraga,J. Phys. Chem. 69, 3795 (1965); J. E. Desnoyers and M. Arel,Can. J. Chem. 45, 359 (1967).

    Google Scholar 

  35. B. E. Conway and R. E. Verrall,J. Phys. Chem. 70, 3952 (1966); J. E. Desnoyers and P. R. Philip,Can. J. Chem. 50, 1094 (1972).

    Google Scholar 

  36. F. J. Millero and W. Drost-Hansen,J. Phys. Chem. 72, 1758 (1968).

    Google Scholar 

  37. J. E. Desnoyers, M. Arel, G. Peron, and C. Jolicoeur,J. Phys. Chem. 73, 3346 (1969).

    Google Scholar 

  38. R. W. Gurney,Ionic processes in Solution (McGraw-Hill, New York, 1954).

    Google Scholar 

  39. P. R. Philip and J. E. Desnoyers,J. Chim. Phys. (to be published).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Philip, P.R., Desnoyers, J.E. Apparent molal heat capacities of transfer from H2O to D2O of tetraalkylammonium bromides. J Solution Chem 1, 353–367 (1972). https://doi.org/10.1007/BF00715993

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00715993

Key words

Navigation