Foundations of Physics

, Volume 8, Issue 3–4, pp 211–228 | Cite as

Spacetime code: Preliminaries and motivations

  • Gin McCollum


A review of the work of David Finkelstein and others on quantum topology is given, the intention being to present physical ideas and a progress report, which will help readers with the more detailed papers. Some new approaches involving walks on graphs are presented.


Progress Report Spacetime Code Quantum Topology Detailed Paper Physical Idea 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    David Finkelstein, Part I,Phys. Rev. 184, 1261 (1969); II,Phys. Rev. D 5, 320 (1972);III,Phys. Rev. D 5, 2922 (1972); IV,Phys. Rev. D 9, 2219 (1974); V, David Finkelstein, Graham Frye, and Leonard Susskind,Phys. Rev. D 9, 2231 (1974); VI, David Finkelstein and Gin McCollum, Discrete Feynman Diagrams, inQuantum Theory and the Structures of Time and Space, to appear.Google Scholar
  2. 2.
    David Finkelstein, inPhysical Reality and Mathematical Description (The Jauch Festschrift), C. Enz and J. Mehra, eds. (Reidel, Dordrecht, 1974); David Finkelstein and Gin McCollum, inQuantum Theory and the Structures of Time and Space (The Feldafing Volume), L. Castell, M. Drieschner, and C. F. von Weizsaecker, eds. (Carl Hanser Verlag, Muenchen, 1975).Google Scholar
  3. 3.
    Roger Penrose,J. Math. Phys. 8, 345 (1967);Int. J. Theor. Phys. 1, 61 (1968); inBattelle Rencontres 1967, C. M. DeWitt and J. A. Wheeler, eds. (Benjamin, New York, 1968); inQuantum Theory and Beyond, T. Bastin, ed. (Cambridge Univ. Press, 1971); inMagic without Magic: John Archibald Wheeler, J. R. Klauder, ed. (Freeman, San Francisco, 1972); Roger Penrose and M. A. H. MacCallum,Phys. Rep. 6C, 242 (1973); Roger Penrose, inGroup Theory in Non-Linear Problems, A. O. Barut, ed. (Reidel, Dordrecht, 1974).Google Scholar
  4. 4.
    C. F. von Weizsaecker,Naturwiss. 38, 533 (1951);20, 545 (1955); inQuantum Theory and Beyond, T. Bastin, ed. (Cambridge Univ. Press, 1971); inThe Physicist's Conception of Nature, J. Mehra, ed. (Reidel, Dordrecht, 1973);Br. J. Phil. Sci. 24, 321 (1973); inPhysical Reality and Mathematical Description, C. Enz and J. Mehra, eds. (Reidel, Dordrecht, 1974).Google Scholar
  5. 5.
    Peter G. Bergmann and Ralph Schiller,Phys. Rev. 89, 4 (1953); Peter G. Bergmann,Helv. Phys. Acta Suppl. IV, 79 (1956).Google Scholar
  6. 6.
    Arthur Komar, inProceedings of the International Conference on Relativistic Theories of Gravitation, Vol. II (London, 1965);Phys. Rev. 134, B1430 (1964).Google Scholar
  7. 7.
    P. A. M. Dirac,Can. J. Math. 2, 129 (1950);3, 1 (1951).Google Scholar
  8. 8.
    Julian Schwinger,Phys. Rev. 82, 914 (1951);127, 324 (1962);130, 406 (1962);130, 800 (1962);130, 1253 (1962).Google Scholar
  9. 9.
    Bryce S. DeWitt,Dynamical Theory of Groups and Fields (Gordon and Breach, New York, 1965).Google Scholar
  10. 10.
    D. R. Brill and R. H. Gowdy,Rep. Prog. Phys. 33, 413 (1970).Google Scholar
  11. 11.
    J. Wess and B. Zumino,Nucl. Phys. B70, 39 (1974).Google Scholar
  12. 12.
    Bruno Zumino, Effective Lagrangians and Broken Symmetries, inLectures on Elementary Particles and Quantum Field Theories (1970 Brandeis University Summer Institute in Theoretical Physics), Vol. 2, S. Deser, M. Grisaru, and H. Pendleton, eds. (MIT Press, Cambridge, Mass., 1970).Google Scholar
  13. 13.
    David Finkelstein, inBoston Studies in the Philosophy of Science, Vol. V (Reidel, Dordrecht, 1968), p. 199.Google Scholar
  14. 14.
    David Hestenes,Space-Time Algebra (Gordon and Breach, New York, 1966).Google Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • Gin McCollum
    • 1
  1. 1.Department of MathematicsCornell UniversityIthaca

Personalised recommendations