Foundations of Physics

, Volume 11, Issue 1–2, pp 77–101 | Cite as

The foundations of relativity

  • J. C. Aron


In a previous paper a stochastic foundation was proposed for microphysics: the nonrelativistic and relativistic domains were shown to be connected with two different approximations of diffusion theory; the relativistic features (Lorentz contraction for the coordinate standard deviation, covariant diffusion equation) were not derived from the relativistic formalism introduced at the start, but emerged from diffusion theory itself. In the present paper these results are given a new presentation, which aims at elucidating not the foundations of quantum mechanics, but those of relativity. This leads to a discussion of points still controversial in the interpretation of relativity. In particular two problems appear in a new light: the character of time and length alterations, and the privileged role of the velocityc. Besides, the question of a possible limitation of relativity (and more generally of the laws of mechanics) in the domain of particle substructure is raised and supported by exemples drawn from the hydrodynamical model of a spinned particle. Suggestions are presented for the possibility of a deeper conceptual unification of special and general relativity.


Standard Deviation General Relativity Quantum Mechanic Diffusion Equation Hydrodynamical Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. C. Aron,Found. Phys. 9, 163 (1979).Google Scholar
  2. 2.
    J. C. Hafele and R. L. Keating,Science 177, 166 (1972).Google Scholar
  3. 3.
    R. G. Newton and E. P. Wigner,Rev. Mod. Phys. 21, 400 (1949).Google Scholar
  4. 4.
    J. C. Aron,Prog. Theor. Phys. 35, 147 (1966).Google Scholar
  5. 5.
    W. J. Lehr and J. L. Park,J. Math. Phys. 18, 1235 (1977).Google Scholar
  6. 6.
    A. Einstein,Phys. Z. 12, 509 (1911).Google Scholar
  7. 7.
    M. A. Tonnelat,Histoire du principe de relativité (Paris, Flammarion, 1971), pp. 74 and 251.Google Scholar
  8. 8.
    L. de Broglie,La théorie des particules de spin 1/2 (Paris, Gauthier-Villars, 1952), p. 42.Google Scholar
  9. 9.
    J. C. Aron,Mécanique aléatoire et microphysique (Publications scientifiques de l'Université d'Alger, Mathématiques, Tome X, 1963), p. 148.Google Scholar
  10. 10.
    J. Kuti and V. F. Weisskopf,Phys. Rev. D 4, 3420 (1971).Google Scholar
  11. 11.
    H. J. Lipkin,Phys. Reports 8C(3), 186 (1973).Google Scholar
  12. 12.
    J. Kogut and L. Susskind,Phys. Reports 8C(2), 100 (1973).Google Scholar
  13. 13.
    R. M. Dudley,Arkiv för Mat. 6, 241 (1965);Rocky Mountain J. Math. 4, 401 (1974).Google Scholar
  14. 14.
    R. Hakim,J. Math. Phys. 9, 1805 (1968).Google Scholar
  15. 15.
    J. L. Synge,Relativity, the Special Theory (North-Holland, 1956), pp. 6 and 7.Google Scholar
  16. 16.
    J. M. Lévy-Leblond,La Recherche 98, 26 (1979).Google Scholar
  17. 17.
    M. von Laue,Die Relativitätstheorie (Brauenscheig, Vieweg und Sohn, 1921), p. 62.Google Scholar
  18. 18.
    V. R. Cane,Bull. Inst. Int. Stat. 42, 622 (1967).Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • J. C. Aron
    • 1
  1. 1.Institut Henri PoincaréParisFrance

Personalised recommendations