Advertisement

Decomposable measure spaces

  • D. H. Fremlin
Article

Keywords

Stochastic Process Probability Theory Mathematical Biology Measure Space Decomposable Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berberian, S.K.: Measure and Integration. New York: MacMillan 1965Google Scholar
  2. 2.
    Chatterji, S.D.: Disintegration of measures and lifting: pp. 69–83 of Vector and Operator Valued Measures and Applications. New York-London: Academic 1973Google Scholar
  3. 3.
    Comfort, W.W., Negrepontis, S.: The Theory of Ultrafilters. Berlin-Heidelberg-New York: Springer 1974Google Scholar
  4. 4.
    Fell, J.M.G.: A note on abstract measure. Pacific J. Math.6, 43–45 (1956)Google Scholar
  5. 5.
    Fremlin, D.H.: Topological Riesz Spaces and Measure Theory. Cambridge: Cambridge University Press 1974Google Scholar
  6. 6.
    Ionescu Tulcea, A. & Ionescu Tulcea, C.: Topics in the Theory of Lifting. Berlin-Heidelberg-New York: Springer 1969Google Scholar
  7. 7.
    LeCam, L.: Sufficiency and approximate sufficiency. Ann. Math. Statist.35, 1419–1455 (1964)Google Scholar
  8. 8.
    Rosser, J.B.: Simplified Independence Proofs. New York: Academic 1969Google Scholar
  9. 9.
    Segal, I.E.: Equivalences of measure spaces. Amer. J. Math.73, 275–313 (1951)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • D. H. Fremlin
    • 1
  1. 1.Dept. of MathematicsUniversity of EssexColchesterEngland

Personalised recommendations