Decomposable measure spaces

  • D. H. Fremlin


Stochastic Process Probability Theory Mathematical Biology Measure Space Decomposable Measure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berberian, S.K.: Measure and Integration. New York: MacMillan 1965Google Scholar
  2. 2.
    Chatterji, S.D.: Disintegration of measures and lifting: pp. 69–83 of Vector and Operator Valued Measures and Applications. New York-London: Academic 1973Google Scholar
  3. 3.
    Comfort, W.W., Negrepontis, S.: The Theory of Ultrafilters. Berlin-Heidelberg-New York: Springer 1974Google Scholar
  4. 4.
    Fell, J.M.G.: A note on abstract measure. Pacific J. Math.6, 43–45 (1956)Google Scholar
  5. 5.
    Fremlin, D.H.: Topological Riesz Spaces and Measure Theory. Cambridge: Cambridge University Press 1974Google Scholar
  6. 6.
    Ionescu Tulcea, A. & Ionescu Tulcea, C.: Topics in the Theory of Lifting. Berlin-Heidelberg-New York: Springer 1969Google Scholar
  7. 7.
    LeCam, L.: Sufficiency and approximate sufficiency. Ann. Math. Statist.35, 1419–1455 (1964)Google Scholar
  8. 8.
    Rosser, J.B.: Simplified Independence Proofs. New York: Academic 1969Google Scholar
  9. 9.
    Segal, I.E.: Equivalences of measure spaces. Amer. J. Math.73, 275–313 (1951)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • D. H. Fremlin
    • 1
  1. 1.Dept. of MathematicsUniversity of EssexColchesterEngland

Personalised recommendations