Advertisement

Foundations of Physics

, Volume 9, Issue 3–4, pp 237–259 | Cite as

Can stochastic physics be a complete theory of nature?

  • Steven M. Moore
Article

Abstract

The prospects for a complete stochastic theory of microscopic phenomena are considered. The two traditional schools of stochastic physics, the diffusion process school and the zero-point electromagnetic field school, are reviewed. A completely relativistic theory, stochastic field theory, is proposed as an extension of the ideas of these two schools. Within the context of stochastic field theory we present the following new results: an elementary stochastization scheme which produces the zero-point electromagnetic field; a physical interpretation of the mathematical methods developed by Lukosz for calculating zero-point energies; a calculation of the first-order Lamb shift which generalizes that of Welton; a new setting for a finite-temperature theory; and comments on the bag model for quark confinement.

Keywords

Diffusion Process Mathematical Method Physical Interpretation Relativistic Theory Complete Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Kershaw,Phys. Rev. 136B, 1850 (1964).Google Scholar
  2. 2.
    E. Nelson,Phys. Rev. 150, 1079 (1966).Google Scholar
  3. 3.
    L. de la Peña-Auerbach,Phys. Lett. 27A, 594 (1968).Google Scholar
  4. 4.
    L. de la Peña-Auerbach,J. Math. Phys. 10, 1620 (1969).Google Scholar
  5. 5.
    T. G. Dankel, Jr.,Arch. Rat. Mech. Analy. 37, 192 (1970).Google Scholar
  6. 6.
    L. de la Peña-Auerbach,J. Math. Phys. 12, 453 (1971).Google Scholar
  7. 7.
    J.-P. Caubet,C. R. Acad. Sci. 274, 1502 (1972).Google Scholar
  8. 8.
    L. de la Peña-Auerbach,Found. Phys. 5, 355 (1975).Google Scholar
  9. 9.
    P. Braffort and C. Tzara,C. R. Acad. Sci. 239, 157 (1954).Google Scholar
  10. 10.
    P. Braffort, M. Surdin, and A. Taroni,C. R. Acad. Sci. 261, 4339 (1965).Google Scholar
  11. 11.
    T. Marshall,Proc. Camb. Phil. Soc. 61, 537 (1965).Google Scholar
  12. 12.
    T. H. Boyer,Phys. Rev. D 11, 790 (1975).Google Scholar
  13. 13.
    M. Surdin,Ann. Inst. H. Poincaré 15, 203 (1971).Google Scholar
  14. 14.
    P. Claverie and S. Diner,Ann. Fond. L. de Broglie 1, 73 (1976).Google Scholar
  15. 15.
    J. L. Doob,Stochastic Processes (Wiley, New York, 1953).Google Scholar
  16. 16.
    I. M. Gel'fand and N. Ya. Vilenkin,Generalized Functions Vol. 4 (Academic Press, New York, 1964).Google Scholar
  17. 17.
    W. Lukosz,Z. Phys. 258, 99 (1973).Google Scholar
  18. 18.
    T. A. Welton,Phys. Rev. 74, 1157 (1948).Google Scholar
  19. 19.
    A. Chodos, R. L. Jaffe, K. Johnson, C. B. Thorn, and V. F. Weisskopf,Phys. Rev. D 9, 3471 (1974).Google Scholar
  20. 20.
    A. Chodos, R. L. Jaffe, K. Johnson, and C. B. Thorn,Phys. Rev. D 10, 2599 (1974).Google Scholar
  21. 21.
    T. DeGrand, R. L. Jaffe, K. Johnson, and J. Kiskis,Phys. Rev. D 12, 2060 (1975).Google Scholar
  22. 22.
    K. Johnson and C. B. Thorn,Phys. Rev. D 13, 1934 (1976).Google Scholar
  23. 23.
    R. P. Feynman and A. R. Hibbs,Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).Google Scholar
  24. 24.
    E. Nelson,J. Math. Phys. 5, 332 (1964).Google Scholar
  25. 25.
    C. DeWitt-Morette,Comm. Math. Phys. 28, 47 (1972);37, 63 (1974).Google Scholar
  26. 26.
    S. A. Albeverio and R. J. Hoegh-Krohn,Mathematical Theory of Feynman Path Integrals (Springer, Berlin, 1976).Google Scholar
  27. 27.
    H. B. G. Casimir,Proc. K. Ned. Akad. Wetensch. 51, 793 (1948).Google Scholar
  28. 28.
    H. B. G. Casimir and D. Polder,Phys. Rev. 73, 360 (1948).Google Scholar
  29. 29.
    A. Van Sifhout, Thesis, U. of Utrecht, Holland (1966).Google Scholar
  30. 30.
    S. Hunklinger, Dissertation, T. H. München, Germany (1969).Google Scholar
  31. 31.
    D. Tabor and R. H. S. Winterton,Proc. Roy. Soc. A 312, 435 (1969).Google Scholar
  32. 32.
    A. Shih, D. Raskin, and P. Kusch,Phys. Rev. A 9, 652 (1969).Google Scholar
  33. 33.
    J. N. Israelachvili and D. Tabor,Proc. Roy. Soc. A 331, 19 (1972).Google Scholar
  34. 34.
    A. Shih,Phys. Rev. A 9, 1507 (1974).Google Scholar
  35. 35.
    O. Theimer,Phys. Rev. D 4, 1598 (1971).Google Scholar
  36. 36.
    T. H. Boyer,Phys. Rev. 182, 1374 (1969).Google Scholar
  37. 37.
    G. H. Goedecke,Nuovo Cim. 28B, 225 (1975);30B, 108 (1975).Google Scholar
  38. 38.
    E. Santos,Nuovo Cim. 19B, 57 (1974).Google Scholar
  39. 39.
    L. de la Peña-Auerbach and A. M. Cetto,Rev. Mex. Fis. 25, 1 (1976).Google Scholar
  40. 40.
    W. L. Burke,Phys. Rev. A 2, 1501 (1970).Google Scholar
  41. 41.
    W. L. Burke,J. Math. Phys. 12, 401 (1971).Google Scholar
  42. 42.
    A. Richoz,Helv. Phys. Acta 49, 99 (1976).Google Scholar
  43. 43.
    J. G. Gilson,Proc. Camb. Phil. Soc. 64, 1061 (1968).Google Scholar
  44. 44.
    L. de la Peña-Auerbach and A. M. Cetto,J. Math. Phys. 18, 1612 (1977).Google Scholar
  45. 45.
    R. E. Collins,Found. Phys. 7, 475 (1977).Google Scholar
  46. 46.
    H. B. G. Casimir,Physica 19, 846 (1953).Google Scholar
  47. 47.
    T. H. Boyer,Phys. Rev. 174, 1764 (1968).Google Scholar
  48. 48.
    W. Lukosz,Physica 56, 109 (1971).Google Scholar
  49. 49.
    S. M. Moore, Complements to Nelson's Stochastic Mechanics, Uniandes preprint (January 1979).Google Scholar
  50. 50.
    E. Nelson,J. Funct. Anal. 11, 211 (1972);12, 97, 211 (1973).Google Scholar
  51. 51.
    F. Guerra and P. Ruggiero,Phys. Rev. Lett. 31, 1022 (1972).Google Scholar
  52. 52.
    T. H. Yao,J. Math. Phys. 17, 241 (1976).Google Scholar
  53. 53.
    S. C. Lim,J. Phys. A 9, 1731 (1976).Google Scholar
  54. 54.
    T. W. Marshall,Izv. Vuz Fiz. 11, 34 (1968).Google Scholar
  55. 55.
    M. Gell-Mann,Phys. Rev. 125, 1067 (1962).Google Scholar
  56. 56.
    J. Fröhlich and K. Osterwalder,Helv. Phys. Acta 47, 781 (1975).Google Scholar
  57. 57.
    S. L. Adler and R. F. Dashen,Current Algebras (Benjamin, New York, 1968).Google Scholar
  58. 58.
    M. Gell-Mann,Phys. Lett. 8, 214 (1964).Google Scholar
  59. 59.
    S. Weinberg,Phys. Rev. Lett. 19, 1264 (1967).Google Scholar
  60. 60.
    R. Streater and A. S. Wightman,PCT, Spin and Statistics, and All That (Benjamin, New York, 1964).Google Scholar
  61. 61.
    G. C. Hegerfeldt,Nuovo Cim. 25B, 538 (1975).Google Scholar
  62. 62.
    K. Osterwalder and R. Schrader,Comm. Math. Phys. 31, 83 (1973);42, 281 (1975).Google Scholar
  63. 63.
    S. M. Moore,Lett. Nuovo Cim. 23, 195 (1978).Google Scholar
  64. 64.
    D. A. Kirzhnits and A. D. Linde,Phys. Lett. 42B, 471 (1972).Google Scholar
  65. 65.
    L. Dolan and R. Jackiw,Phys. Rev. D 9, 3320 (1974).Google Scholar
  66. 66.
    S. Weinberg,Phys. Rev. D 9, 3357 (1974).Google Scholar
  67. 67.
    J. Fröhlich,Helv. Phys. Acta 48, 355 (1975).Google Scholar
  68. 68.
    R. L. Jaffe, private communication.Google Scholar
  69. 69.
    R. Hagedorn and J. Ranft,Nucl. Phys. B 48, 157 (1972).Google Scholar
  70. 70.
    R. Jackiw,Rev. Mod. Phys. 49, 681 (1977).Google Scholar
  71. 71.
    C. Frederick,Phys. Rev. D 13, 3183 (1976).Google Scholar
  72. 72.
    S. Weinberg,Gravitation and Cosmology (Wiley, New York, 1972).Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • Steven M. Moore
    • 1
  1. 1.Departamento de FisicaUniversidad de los AndesBogotáColombia

Personalised recommendations