Foundations of Physics

, Volume 6, Issue 5, pp 539–559 | Cite as

Time symmetry and interpretation of quantum mechanics

  • O. Costa de Beauregard


A drastic resolution of the quantum paradoxes is proposed, combining (I) von Neumann's postulate that collapse of the state vector is due to the act of observation, and (II) my reinterpretation of von Neumann's quantal irreversibility as an equivalence between wave retardation and entropy increase, both being “factlike” rather than “lawlike” (Mehlberg). This entails a coupling of the two de jure symmetries between (I) retarded and (II) advanced waves, and between Aristotle's information as (I) learning and (II) willing awareness. Symmetric acceptance of cognizance as a source of retarted waves, and of will as a sink of advanced waves, is submitted as a central “paradox” of the Copernican or Einsteinian sort, out of which new light is shed upon previously known paradoxes, such as the EPR paradox, Schrödinger's cat, and Wigner's friend. Parapsychology is thus found to creep into the picture.


Entropy Quantum Mechanic State Vector Wave Retardation Entropy Increase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. M. Jauch,Foundations of Quantum Mechanics (Addison-Wesley, 1968).Google Scholar
  2. 2.
    H. P. Krips,Philosophy of Science 36, 145 (1969).Google Scholar
  3. 3.
    P. A. Moldauer,Phys. Rev. D 5, 1028 (1972).Google Scholar
  4. 4.
    P. A. Moldauer,Found. Phys. 2, 41 (1972).Google Scholar
  5. 5.
    G. Ludwig, “The Measurement Process and an Axiomatic Foundation of Quantum Mechanics,” inFoundations of Quantum Mechanics, B. d'Espagnat, ed. (Academic Press, 1972), p. 287.Google Scholar
  6. 6.
    D. Sharp,Philosophy of Science 28, 225 (1961).Google Scholar
  7. 7.
    B. d'Espagnat,Conceptual Foundations of Quantum Mechanics (Benjamin, 1971).Google Scholar
  8. 8.
    B. d'Espagnat, “Mesure et non-séparabilité,” inFoundations of Quantum Mechanics, B. d'Espagnat, ed. (Academic Press, 1971), p. 84.Google Scholar
  9. 9.
    E. P. Wigner, “The Subject of our Discussions,” inFoundations of Quantum Mechanics, B. d'Espagnat, ed. (Academic Press, 1971), p. 14.Google Scholar
  10. 10.
    C. A. Hooker,Am. J. Phys. 38, 851 (1970).Google Scholar
  11. 11.
    C. A. Hooker,Philosophy of Science 38, 224 (1971).Google Scholar
  12. 12.
    C. A. Hooker,Philosophy of Science 38, 418 (1971).Google Scholar
  13. 13.
    C. A. Hooker, “The Nature of Quantum Mechanical Reality: Einstein versus Bohr,” inParadox and Paradigm, R. G. Colodny, ed. (Univ. of Pittsburgh Press, 1973).Google Scholar
  14. 14.
    J. Hadamard,Cours d'Analyse Professé à l'École Polytechnique (Hermann, 1930), Vol. 2, p. 385.Google Scholar
  15. 15.
    J. Abelé and P. Malvaux,Vitesse et Univers Relativiste (Sedes, Paris, 1954).Google Scholar
  16. 16.
    H. Yilmaz, “Could Relativity Theory have been discovered in 1728?” (mimeographed paper).Google Scholar
  17. 17.
    H. Poincaré, “Sur la dynamique de l'électron,” inRendiconti Circolo Matematico di Palermo 21, 129 (1906).Google Scholar
  18. 18.
    R. G. Colodny, ed.,Paradox and Paradigm (University of Pittsburgh Press, 1973).Google Scholar
  19. 19.
    J. von Neumann,Mathematische Grundlagen der Quantenmechanik (Springer, Berlin, 1932).Google Scholar
  20. 20.
    F. London and E. Bauer,La Théorie de l'Observation en Mécanique Quantique (Hermann, Paris, 1939).Google Scholar
  21. 21.
    O. Costa de Beauregard, “Irreversibility Problems,” inProceedings of the 1964 International Congress for Logic, Methodology and Philosophy of Science, Y. Bar Hillel, ed. (North-Holland, 1964), p. 313.Google Scholar
  22. 22.
    O. Costa de Beauregard, “Is there a Paradox in the Theory of Time Asymmetry,” inA Critical Review of Thermodynamics, E. B. Stuart, B. Gal-Or, and A. J. Brainard, eds. (Mono Book Corp., Baltimore, 1970), p. 461.Google Scholar
  23. 23.
    O. Costa de Beauregard,Studium Generale 24, 10 (1971).Google Scholar
  24. 24.
    A. Landé,New Foundations of Quantum Mechanics (Cambridge University Press, 1965).Google Scholar
  25. 25.
    J. D. van der Waals,Phys. Z. 12, 547 (1911).Google Scholar
  26. 26.
    J. W. Gibbs,Elementary Principles in Statistical Mechanics (Yale University Press, 1914), p. 150.Google Scholar
  27. 27.
    H. Bergson,l'Évolution Créatrice (Presses Universitaires de France, Paris, 1907).Google Scholar
  28. 28.
    L. Fantappie,Teoria Unitaria del Mondo Fisico e Biologico (Humanitas Nova, Roma, 1944).Google Scholar
  29. 29.
    R. T. Cox,The Algebra of Probable Inference (The Johns Hopkins Press, 1961).Google Scholar
  30. 30.
    L. Briliouin,Science and Information Theory (Academic Press, 1962), p. 294.Google Scholar
  31. 31.
    V. Fock,DAN SSSR 60, 1157, (1948).Google Scholar
  32. 32.
    W. Ritz and A. Einstein,Phys. Z. 10, 323 (1909).Google Scholar
  33. 33.
    E. T. Jaynes,Phys. Rev. 106, 620;108, 171 (1957).Google Scholar
  34. 34.
    W. M. Elsasser,Phys. Rev. 52, 987, (1937).Google Scholar
  35. 35.
    M. Riesz, “Sur Certaines Notions Fondamentales en Théorie Quantique Relativiste,” in Actes du Dixième Congrès des Mathématiciens Scandinaves (Copenhagen, 1946).Google Scholar
  36. 36.
    O. Costa de Beauregard,Précis de Mécanique Quantique Relativiste (Dunod, Paris, 1967).Google Scholar
  37. 37.
    A. S. Wightman and S. S. Schweber,Phys. Rev. 98, 812 (1955).Google Scholar
  38. 38.
    P. A. M. Dirac,The Principles of Quantum Mechanics (Oxford, Clarendon Press, 1930, 1935, 1947).Google Scholar
  39. 39.
    H. Schmidt,J. Appl. Phys. 41, 462 (1970).Google Scholar
  40. 40.
    H. Schmidt,J. Parapsychol. 34, 175 (1970).Google Scholar
  41. 41.
    G. R. Price,Science 175, 359 (1972).Google Scholar
  42. 42.
    A. Einstein, B. Podolsky, and N. Rosen,Phys. Rev. 47, 777 (1935).Google Scholar
  43. 43.
    A. Einstein, “Electrons et Photons,” inRapports et discussions du 5e Conseil Solvay (Gauthier Villars, Paris, 1928), p. 253.Google Scholar
  44. 44.
    E. Schrödinger,Naturwiss. 23, 807, 823, 844 (1935).Google Scholar
  45. 45.
    M. Renninger,Phys. Z. 136, 251 (1963).Google Scholar
  46. 46.
    O. Costa de Beauregard,Dialectica 19, 280 (1965).Google Scholar
  47. 47.
    O. Costa de Beauregard,Dialectica 22, 187 (1960).Google Scholar
  48. 48.
    O. Costa de Beauregard, “Discussion on Temporal Asymmetry in Thermodynamics and Cosmology,” inProceedings of the International Conference on Thermodynamics, P. T. Landsberg, ed. (Butterworths, London, 1970), p. 539.Google Scholar
  49. 49.
    D. Bohm,Quantum Theory (Prentice Hall, 1951), Ch. 22.Google Scholar
  50. 50.
    J. S. Bell,Physics 1, 195 (1965).Google Scholar
  51. 51.
    A. Shimony, “Experimental Test of Local Hidden-Variable Theories,” inFoundations of Quantum Mechanics, B. d'Espagnat, ed. (Academic Press, 1971), p. 182.Google Scholar
  52. 52.
    S. J. Freedman and J. Clauser,Phys. Rev. Lett. 28, 938 (1972).Google Scholar
  53. 53.
    S. J. Freedman, “Experimental test of local hidden variable theories,” Ph.D. Thesis (1972), unpublished, and references therein.Google Scholar
  54. 54.
    G. M. Prosperi, “Macroscopic Physics and the Problem of Measurement in Quantum Mechanics,” inFoundations of Physics, B. d'Espagnat, ed. (Academic Press, 1971), p. 97.Google Scholar
  55. 55.
    G. Reece,Int. J. Theor. Phys. 7, 81 (1973).Google Scholar
  56. 56.
    A. Landé,Quantum Mechanics in a New Key (Exposition Press, New York, 1973), p. 11.Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • O. Costa de Beauregard
    • 1
  1. 1.Institut Henri PoincaréParisFrance

Personalised recommendations