Skip to main content
Log in

Time symmetry and interpretation of quantum mechanics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A drastic resolution of the quantum paradoxes is proposed, combining (I) von Neumann's postulate that collapse of the state vector is due to the act of observation, and (II) my reinterpretation of von Neumann's quantal irreversibility as an equivalence between wave retardation and entropy increase, both being “factlike” rather than “lawlike” (Mehlberg). This entails a coupling of the two de jure symmetries between (I) retarded and (II) advanced waves, and between Aristotle's information as (I) learning and (II) willing awareness. Symmetric acceptance of cognizance as a source of retarted waves, and of will as a sink of advanced waves, is submitted as a central “paradox” of the Copernican or Einsteinian sort, out of which new light is shed upon previously known paradoxes, such as the EPR paradox, Schrödinger's cat, and Wigner's friend. Parapsychology is thus found to creep into the picture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Jauch,Foundations of Quantum Mechanics (Addison-Wesley, 1968).

  2. H. P. Krips,Philosophy of Science 36, 145 (1969).

    Google Scholar 

  3. P. A. Moldauer,Phys. Rev. D 5, 1028 (1972).

    Google Scholar 

  4. P. A. Moldauer,Found. Phys. 2, 41 (1972).

    Google Scholar 

  5. G. Ludwig, “The Measurement Process and an Axiomatic Foundation of Quantum Mechanics,” inFoundations of Quantum Mechanics, B. d'Espagnat, ed. (Academic Press, 1972), p. 287.

  6. D. Sharp,Philosophy of Science 28, 225 (1961).

    Google Scholar 

  7. B. d'Espagnat,Conceptual Foundations of Quantum Mechanics (Benjamin, 1971).

  8. B. d'Espagnat, “Mesure et non-séparabilité,” inFoundations of Quantum Mechanics, B. d'Espagnat, ed. (Academic Press, 1971), p. 84.

  9. E. P. Wigner, “The Subject of our Discussions,” inFoundations of Quantum Mechanics, B. d'Espagnat, ed. (Academic Press, 1971), p. 14.

  10. C. A. Hooker,Am. J. Phys. 38, 851 (1970).

    Google Scholar 

  11. C. A. Hooker,Philosophy of Science 38, 224 (1971).

    Google Scholar 

  12. C. A. Hooker,Philosophy of Science 38, 418 (1971).

    Google Scholar 

  13. C. A. Hooker, “The Nature of Quantum Mechanical Reality: Einstein versus Bohr,” inParadox and Paradigm, R. G. Colodny, ed. (Univ. of Pittsburgh Press, 1973).

  14. J. Hadamard,Cours d'Analyse Professé à l'École Polytechnique (Hermann, 1930), Vol. 2, p. 385.

  15. J. Abelé and P. Malvaux,Vitesse et Univers Relativiste (Sedes, Paris, 1954).

    Google Scholar 

  16. H. Yilmaz, “Could Relativity Theory have been discovered in 1728?” (mimeographed paper).

  17. H. Poincaré, “Sur la dynamique de l'électron,” inRendiconti Circolo Matematico di Palermo 21, 129 (1906).

    Google Scholar 

  18. R. G. Colodny, ed.,Paradox and Paradigm (University of Pittsburgh Press, 1973).

  19. J. von Neumann,Mathematische Grundlagen der Quantenmechanik (Springer, Berlin, 1932).

    Google Scholar 

  20. F. London and E. Bauer,La Théorie de l'Observation en Mécanique Quantique (Hermann, Paris, 1939).

    Google Scholar 

  21. O. Costa de Beauregard, “Irreversibility Problems,” inProceedings of the 1964 International Congress for Logic, Methodology and Philosophy of Science, Y. Bar Hillel, ed. (North-Holland, 1964), p. 313.

  22. O. Costa de Beauregard, “Is there a Paradox in the Theory of Time Asymmetry,” inA Critical Review of Thermodynamics, E. B. Stuart, B. Gal-Or, and A. J. Brainard, eds. (Mono Book Corp., Baltimore, 1970), p. 461.

    Google Scholar 

  23. O. Costa de Beauregard,Studium Generale 24, 10 (1971).

    Google Scholar 

  24. A. Landé,New Foundations of Quantum Mechanics (Cambridge University Press, 1965).

  25. J. D. van der Waals,Phys. Z. 12, 547 (1911).

    Google Scholar 

  26. J. W. Gibbs,Elementary Principles in Statistical Mechanics (Yale University Press, 1914), p. 150.

  27. H. Bergson,l'Évolution Créatrice (Presses Universitaires de France, Paris, 1907).

    Google Scholar 

  28. L. Fantappie,Teoria Unitaria del Mondo Fisico e Biologico (Humanitas Nova, Roma, 1944).

    Google Scholar 

  29. R. T. Cox,The Algebra of Probable Inference (The Johns Hopkins Press, 1961).

  30. L. Briliouin,Science and Information Theory (Academic Press, 1962), p. 294.

  31. V. Fock,DAN SSSR 60, 1157, (1948).

    Google Scholar 

  32. W. Ritz and A. Einstein,Phys. Z. 10, 323 (1909).

    Google Scholar 

  33. E. T. Jaynes,Phys. Rev. 106, 620;108, 171 (1957).

    Google Scholar 

  34. W. M. Elsasser,Phys. Rev. 52, 987, (1937).

    Google Scholar 

  35. M. Riesz, “Sur Certaines Notions Fondamentales en Théorie Quantique Relativiste,” in Actes du Dixième Congrès des Mathématiciens Scandinaves (Copenhagen, 1946).

  36. O. Costa de Beauregard,Précis de Mécanique Quantique Relativiste (Dunod, Paris, 1967).

    Google Scholar 

  37. A. S. Wightman and S. S. Schweber,Phys. Rev. 98, 812 (1955).

    Google Scholar 

  38. P. A. M. Dirac,The Principles of Quantum Mechanics (Oxford, Clarendon Press, 1930, 1935, 1947).

    Google Scholar 

  39. H. Schmidt,J. Appl. Phys. 41, 462 (1970).

    Google Scholar 

  40. H. Schmidt,J. Parapsychol. 34, 175 (1970).

    Google Scholar 

  41. G. R. Price,Science 175, 359 (1972).

    Google Scholar 

  42. A. Einstein, B. Podolsky, and N. Rosen,Phys. Rev. 47, 777 (1935).

    Google Scholar 

  43. A. Einstein, “Electrons et Photons,” inRapports et discussions du 5e Conseil Solvay (Gauthier Villars, Paris, 1928), p. 253.

    Google Scholar 

  44. E. Schrödinger,Naturwiss. 23, 807, 823, 844 (1935).

    Google Scholar 

  45. M. Renninger,Phys. Z. 136, 251 (1963).

    Google Scholar 

  46. O. Costa de Beauregard,Dialectica 19, 280 (1965).

    Google Scholar 

  47. O. Costa de Beauregard,Dialectica 22, 187 (1960).

    Google Scholar 

  48. O. Costa de Beauregard, “Discussion on Temporal Asymmetry in Thermodynamics and Cosmology,” inProceedings of the International Conference on Thermodynamics, P. T. Landsberg, ed. (Butterworths, London, 1970), p. 539.

    Google Scholar 

  49. D. Bohm,Quantum Theory (Prentice Hall, 1951), Ch. 22.

  50. J. S. Bell,Physics 1, 195 (1965).

    Google Scholar 

  51. A. Shimony, “Experimental Test of Local Hidden-Variable Theories,” inFoundations of Quantum Mechanics, B. d'Espagnat, ed. (Academic Press, 1971), p. 182.

  52. S. J. Freedman and J. Clauser,Phys. Rev. Lett. 28, 938 (1972).

    Google Scholar 

  53. S. J. Freedman, “Experimental test of local hidden variable theories,” Ph.D. Thesis (1972), unpublished, and references therein.

  54. G. M. Prosperi, “Macroscopic Physics and the Problem of Measurement in Quantum Mechanics,” inFoundations of Physics, B. d'Espagnat, ed. (Academic Press, 1971), p. 97.

  55. G. Reece,Int. J. Theor. Phys. 7, 81 (1973).

    Google Scholar 

  56. A. Landé,Quantum Mechanics in a New Key (Exposition Press, New York, 1973), p. 11.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa de Beauregard, O. Time symmetry and interpretation of quantum mechanics. Found Phys 6, 539–559 (1976). https://doi.org/10.1007/BF00715107

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00715107

Keywords

Navigation