Advertisement

Foundations of Physics

, Volume 8, Issue 11–12, pp 805–822 | Cite as

Quantum measurement as a communication with nature

  • John F. Cyranski
Article

Abstract

It is assumed that experiments yield results that are not isomorphic with reality, but represent a distorted image of reality. Reality is related to observation via a communication channel of finite capacity. Quantum uncertainties are due to the bound on the amount of information available. Use is made of recent results from information and communication theories.

Keywords

Recent Result Communication Channel Communication Theory Quantum Measurement Distorted Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. D. Landau and E. M. Lifshitz,Quantum Mechanics—Non-Relativistic Theory (Pergamon, New York, 1965), p. 4.Google Scholar
  2. 2.
    A. Messiah,Quantum Mechanics (Wiley, New York, 1968), Vol. 1, p. 119.Google Scholar
  3. 3.
    F. Selleri, Realism and the Wave-Function of Quantum Mechanics, inFoundations of Quantum Mechanics, B. D'Espagnat, ed. (Academic, New York, 1971), pp. 398–406.Google Scholar
  4. 4.
    F. J. Belinfante,A Survey of Hidden-Variables Theories (Pergamon, New York, 1973), pp. 18, 183.Google Scholar
  5. 5.
    J. F. Clauser and M. A. Horne,Phys. Rev. D 10, 526 (1974).Google Scholar
  6. 6.
    B. D'Espagnat,Phys. Rev. D 11, 1424 (1975).Google Scholar
  7. 7.
    E. Fry and R. Thompson,Phys. Rev. Lett. 37, 465 (1976).Google Scholar
  8. 8.
    M. Lamehi-Rachti and W. Mittig,Phys. Rev. D 14, 2543 (1976).Google Scholar
  9. 9.
    A. M. Perelomov,Comm. Math. Phys. 26, 222 (1972).Google Scholar
  10. 10.
    L. Brillouin, Observation, Information, and Imagination, inInformation and Prediction in Science, S. Dockx and P. Bernays, eds. (Academic, New York, 1965), pp. 1–14.Google Scholar
  11. 11.
    L. Brillouin,Science and Information Theory (Academic, New York, 1962).Google Scholar
  12. 12.
    T. Berger,Rate Distortion Theory, A Mathematical Basis For Data Compression (Prentice-Hall, Englewood Cliffs, N. J., 1971).Google Scholar
  13. 13.
    C. R. Shannon,Bell Syst. Tech. J. 27, 379 (1948).Google Scholar
  14. 14.
    E. T. Jaynes,IEEE Trans. Syst. Sci. Cyb. SSC-4, 227 (1968).Google Scholar
  15. 15.
    W. Ochs,Rep. Math. Phys. 8, 109 (1975).Google Scholar
  16. 16.
    J. Aczél, B. Forte, and C. T. Ng,Adv. Appl. Prob. 6, 131 (1974).Google Scholar
  17. 17.
    B. Forte and C. C. A. Sastri,J. Math. Phys. 16, 1453 (1975).Google Scholar
  18. 18.
    I. J. Good and D. B. Osteyee,Information, Weight of Evidence, the Singularity between Probability Measures and Signal Detection, (Lecture Notes in Mathematics No. 376; Springer-Verlag, New York, 1974).Google Scholar
  19. 19.
    W. Band and J. L. Park,Found. Phys. 6, 249 (1976).Google Scholar
  20. 20.
    J. P. Noonan and N. S. Tzannes,Inf. Contr. 22, 1 (1973).Google Scholar
  21. 21.
    E. T. Jaynes,Phys. Rev. 106, 620 (1957);108, 171 (1957).Google Scholar
  22. 22.
    E. T. Jaynes,Probability Theory in Science and Engineering, (Field Research Laboratory Socony Mobil Oil Co., Inc. Colloquium Lectures in Pure and Applied Science, No. 4, Feb. 1958).Google Scholar
  23. 23.
    W. Bayer and W. Ochs,Z. Naturforsch. 28a, 693, 1671 (1973).Google Scholar
  24. 24.
    B. Robertson,Phys. Rev. 144, 151 (1966);160, 175 (1967).Google Scholar
  25. 25.
    R. J. Glauber,Phys. Rev. 131, 2766 (1963).Google Scholar
  26. 26.
    M. D. Srinivas and E. Wolf,Phys. Rev. D 11, 1477 (1975).Google Scholar
  27. 27.
    A. Lonke,J. Math. Phys. 19, 1110 (1978).Google Scholar
  28. 28.
    H. Heffner and C. Y. She,Phys. Rev. 152, 1103 (1966).Google Scholar
  29. 29.
    J. L. Synge,Relativity: The General Theory (North-Holland, Amsterdam, 1971), Appendix B.Google Scholar
  30. 30.
    J. Cyranski, On Putting the MEP in its Place, inProceedings of the CNRS International Colloquium “Late Developments of the Information Theory and their Applications” (Paris, July 1977; to be published).Google Scholar
  31. 31.
    K. Friedman and A. Shimony,J. Stat. Phys. 3, 381 (1971).Google Scholar
  32. 32.
    G. Birkhoff,Lattice Theory (American Math. Soc., Providence, R.I., 1973).Google Scholar
  33. 33.
    J. Rothstein,Science 114, 171 (1951).Google Scholar
  34. 34.
    R. Rosenkrantz, inInformation and Inference, J. Hintikka and P. Suppes, eds. (Reidel, Dordrecht, Holland, 1970).Google Scholar
  35. 35.
    J. Rayski,Found. Phys. 3, 89 (1973).Google Scholar
  36. 36.
    V. Majernik,Acta Phys. Aust. 25, 243 (1967).Google Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • John F. Cyranski
    • 1
  1. 1.Theoretical Chemistry InstituteThe National Hellenic Research FoundationAthensGreece

Personalised recommendations