Foundations of Physics

, Volume 9, Issue 1–2, pp 71–122 | Cite as

Simultaneous measurement and joint probability distributions in quantum mechanics

  • Willem M. de Muynck
  • Peter A. E. M. Janssen
  • Alexander Santman


The problem of simultaneous measurement of incompatible observables in quantum mechanics is studied on the one hand from the viewpoint of an axiomatic treatment of quantum mechanics and on the other hand starting from a theory of measurement. It is argued that it is precisely such a theory of measurement that should provide a meaning to the axiomatically introduced concepts, especially to the concept of observable. Defining an observable as a class of measurement procedures yielding a certain prescribed result for the probability distribution of the set of values of some quantity (to be described by the set of eigenvalues of some Hermitian operator), this notion is extended to joint probability distributions of incompatible observables. It is shown that such an extension is possible on the basis of a theory of measurement, under the proviso that in simultaneously measuring such observables there is a disturbance of the measurement results of the one observable, caused by the presence of the measuring instrument of the other observable. This has as a consequence that the joint probability distribution cannot obey the marginal distribution laws usually imposed. This result is of great importance in exposing quantum mechanics as an axiomatized theory, since overlooking it seems to prohibit an axiomatic description of simultaneous measurement of incompatible observables by quantum mechanics.


Probability Distribution Quantum Mechanic Joint Probability Marginal Distribution Simultaneous Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. von Neumann,Mathematical Foundations of Quantum Mechanics (Princeton, 1955).Google Scholar
  2. 2.
    N. Bohr, inAlbert Einstein: Philosopher-Scientist, P. Schilpp, ed. (Tudor, 1949), pp. 201–241.Google Scholar
  3. 3.
    W. Heisenberg,The Physical Principles of Quantum Theory (Chicago, 1930);Z. Physik 43, 172 (1927).Google Scholar
  4. 4.
    J. L. Park and H. Margenau,Int. J. Theor. Phys. 1, 211 (1968).Google Scholar
  5. 5.
    J. L. Park,Phil. of Science 35, 205, 389 (1968).Google Scholar
  6. 6.
    L. E. Ballentine,Rev. Mod. Phys. 42, 358 (1970).Google Scholar
  7. 7.
    L. S. Mayants, W. Yourgrau, and A. J. van der Merwe,Ann. d. Physik 7. Folge 33, 21 (1976).Google Scholar
  8. 8.
    J. M. Jauch,Foundations of Quantum Mechanics (Addison-Wesley, Reading, Mass., 1968).Google Scholar
  9. 9.
    J. Bub,The Interpretation of Quantum Mechanics (Reidel, Dordrecht, 1974).Google Scholar
  10. 10.
    J. M. Jauch,Synthese 29, 131 (1974).Google Scholar
  11. 11.
    D. I. Blokhintsev,Sov. Phys.—Uspekhi 11, 320 (1968); alsoThe Philosophy of Quantum Mechanics (Reidel, Dordrecht, 1968).Google Scholar
  12. 12.
    F. J. Belinfante,Measurements and Time Reversal in Objective Quantum Theory (Pergamon Press, 1975).Google Scholar
  13. 13.
    A. Daneri, A. Loinger, and G. M. Prosperi,Nucl. Phys. 33, 297 (1962); L. Rosenfeld,Progr. Theor. Phys. Suppl. (Commemoration Issue for the 30th Anniversary of the Meson Theory by Dr. H. Yukawa)1965, 222.Google Scholar
  14. 14.
    P. A. Moldauer,Phys. Review D 5, 1028 (1972).Google Scholar
  15. 15.
    H. Margenau,The Nature of Physical Reality (McGraw-Hill, 1950), Chapter 18.Google Scholar
  16. 16.
    E. Wigner,Phys. Rev. 40, 749 (1932).Google Scholar
  17. 17.
    L. Cohen,J. Math. Phys. 7, 781 (1966); G. S. Agarwal and E. Wolf,Phys. Rev. D 2, 2161, 2187, 2206 (1970).Google Scholar
  18. 18.
    L. Cohen,Phil. of Science 33, 317 (1966).Google Scholar
  19. 19.
    E. P. Wigner, inPerspectives in Quantum Theory, W. Yourgrau and A. van der Merwe, eds. (MIT Press, Cambridge, Mass., 1971), pp. 25–36.Google Scholar
  20. 20.
    M. D. Srinivas and E. Wolf,Phys. Rev. D 11, 1477 (1975).Google Scholar
  21. 21.
    P. R. Halmos,A Hilbert Space Problem Book (Van Nostrand, New York, 1967), p. 58.Google Scholar
  22. 22.
    D. J. Ross,Synthese 29, 373 (1974).Google Scholar
  23. 23.
    V. S. Varadarajan,Comm. Pure Appl. Math. XV, 189 (1962).Google Scholar
  24. 24.
    J. S. Bell,Rev. Mod. Phys. 38, 447 (1966); J. S. Bell, inRendiconti della Scuola Internazionale di Fisica -Enrico Fermi-, IL Corso (Academic Press, New York, 1971), p. 171.Google Scholar
  25. 25.
    L. S. Mayants,Found. Phys. 3, 413 (1973).Google Scholar
  26. 26.
    H. Margenau and R. N. Hill,Progr. Theor. Phys. 26, 722 (1961); E. P. Wigner,Am. J. Phys. 38, 1005 (1970).Google Scholar
  27. 27.
    L. S. Mayants,Found. Phys. 4, 335 (1974).Google Scholar
  28. 28.
    S. Kochen and E. P. Specker,J. Math. Mech. 17, 59 (1967).Google Scholar
  29. 29.
    H. J. Groenewold,Physica 12, 405 (1946).Google Scholar
  30. 30.
    N. G. de Bruijn,Nieuw Archief voor Wiskunde (3)XXI, 205 (1973); N. D. Cartwright,Physica 83A, 210 (1976).Google Scholar
  31. 31.
    G. Helmberg,Introduction to Spectral Theory in Hilbert Space (North-Holland, Amsterdam, 1969).Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • Willem M. de Muynck
    • 1
  • Peter A. E. M. Janssen
    • 1
  • Alexander Santman
    • 1
  1. 1.Department of PhysicsEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations