Advertisement

Fibre Chemistry

, Volume 10, Issue 5, pp 468–476 | Cite as

Man-made fibre production by verticaltube wet spinning

  • B. V. Korotkov
  • L. N. Seitova
  • N. A. Dorofeev
  • A. T. Serkov
  • G. A. Danilin
Chemistry And Technology Of Natural-Polymer Fibres

Conclusions

The wet solution-spinning of polymers in tubes is highly advantageous compared with tubeless spinning. The various design solutions show that it is not possible to design a universal tube for the spinning of all types of man-made fibres by the wet method. The suitability of a given system or tube design depends on the nature and processability of the polymer, the type of yarn to be produced, and the desired physicomechanical properties of the yarn.

System 1, for example, is used for spinning from solutions the density of which is lower than that of the precipitation liquor (viscose rayon, acetates, etc.). Systems 2 and 3 are used for spinning from solutions the density of which is higher than that of the precipitation liquor or for high-speed spinning. System 2 is normally used for spinning with a high jet stretch (cuprammonium rayon) and system 3 for spinning yarn below 100 tex at a speed in excess of 100 m/min (textile yarns).

Keywords

Polymer Precipitation Acetate Design Solution Physicomechanical Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    G. G. Finger, E. M. Mogilevskii, and I. P. Baksheev, Khim. Volokna, No. 6, 44 (1964).Google Scholar
  2. 2.
    E. M. Mogilevskii, O. G. Khor'kova, and G. G. Finger, Khim. Volokna, No. 5, 27 (1968).Google Scholar
  3. 3.
    A. T. Serkov et al., Khim. Volokna, No. 6, 2 (1961).Google Scholar
  4. 4.
    A. T. Serkov, S. G. Popenko, and A. V. Ryabushkin, Khim. Volokna, No. 6, 36 (1968).Google Scholar
  5. 5.
    Yu. A. Vinogradov and V. D. Fikhman, Khim. Volokna, No. 4, 15 (1971).Google Scholar
  6. 6.
    K. E. Perepelkin et al., in: Theory of Man-Made Fibre Spinning [in Russian], (ed. by A. T. Serkov), Khimiya, Moscow (1975), p. 129.Google Scholar
  7. 7.
    V. I. Usatenko et al., Khim. Volokna, No. 2, 4 (1969).Google Scholar
  8. 8.
    USA Patent 2,711,559.Google Scholar
  9. 9.
    USA Patent 2,872,702.Google Scholar
  10. 10.
    Japanese Patent 3,956 (1963).Google Scholar
  11. 11.
    Brit. Patent 883,215.Google Scholar
  12. 12.
    USSR Patent 327,690; Japanese Patents 25,336 (1970); 25,335 (1970); British Patent 1130497; West German Patent 1,660,187.Google Scholar
  13. 13.
    West German Patent Application 2,056,872; Japanese Patent 13,163 (1973).Google Scholar
  14. 14.
    German Patent 733,178.Google Scholar
  15. 15.
    USA Patent 2,786,737.Google Scholar
  16. 16.
    USA Patent 2,852,808; British Patents 787,558–787,562.Google Scholar
  17. 17.
    Japanese Patent 8866 (1955).Google Scholar
  18. 18.
    Japanese Patent 5963 (1956).Google Scholar
  19. 19.
    British Patent 10,197,12.Google Scholar
  20. 20.
    USSR Inventor's Certificate 182,846 (1966); Byull. Izobr., No. 12 (1966).Google Scholar
  21. 21.
    USSR Inventor's Certificate 121,526 (1959); Byull. Izobr., No. 15 (1959).Google Scholar
  22. 22.
    Italian Patent 650750.Google Scholar
  23. 23.
    USSR Inventor's Certificate 362,081 (1972); Byull. Izobr., No. 2 (1973).Google Scholar
  24. 24.
    Polish Patent 56,029.Google Scholar
  25. 25.
    British Patent 782,585.Google Scholar
  26. 26.
    British Patent 915,623; West German Patent 1,276,289; Italian Patent 583,105.Google Scholar
  27. 27.
    USA Patent 2,983,952.Google Scholar
  28. 28.
    USA Patent 2,698,963.Google Scholar
  29. 29.
    West German Patent 1,098,154; USA Patent 2,914,803; British Patent 822,800; French patent 1,196,452.Google Scholar
  30. 30.
    USSR Inventor's Certificate 539,992 (1976); Byull. Izobr., No. 47 (1976).Google Scholar
  31. 31.
    USSR Inventor's Certificate 344,040 (1972); Byull. Izobr., No. 21 (1972).Google Scholar
  32. 32.
    USA Patent 3,028,626.Google Scholar
  33. 33.
    USA Patent 2,642,333; Japanese Patent 1959 (1951).Google Scholar
  34. 34.
    USA Patent 2,959,813; British Patent 787,565.Google Scholar
  35. 35.
    British Patent 744,319.Google Scholar
  36. 36.
    USSR Inventor's Certificate 338,566 (1972); Byull. Izobr., No. 16 (1972).Google Scholar
  37. 37.
    USA Patent 2,777,160.Google Scholar
  38. 38.
    USA Patent 2,700,794.Google Scholar
  39. 39.
    USSR Inventor's Certificate 302,898 (1971); Byull. Izobr. No. 15 (1971); East German Patent 60,610.Google Scholar
  40. 40.
    USA Patent 2,789,315.Google Scholar
  41. 41.
    USA Patent 2,073,906.Google Scholar
  42. 42.
    Swedish Patent 101,567.Google Scholar
  43. 43.
    Swedish Patent 97,240; Polish Patent 27,757.Google Scholar
  44. 44.
    USA Patent 3,240,852.Google Scholar
  45. 45.
    USA Patent 3,071,806; Japanese Patent 12,612 (1968); French Patent 1,222,595.Google Scholar
  46. 46.
    USA Patent 3,084,384.Google Scholar
  47. 47.
    USSR Inventor's Certificate 418,575 (1974); Byull. Izobr., No. 9 (1974).Google Scholar
  48. 48.
    USA Patent 2,705,183.Google Scholar
  49. 49.
    USA Patent 2,987,764.Google Scholar
  50. 50.
    USA Patent 3,001,229.Google Scholar
  51. 51.
    East German Patent 2114.Google Scholar
  52. 52.
    West German Patent 856,782.Google Scholar
  53. 53.
    French Patent 1,542,367.Google Scholar
  54. 54.
    USA Patent 3,452,129; French Patent 1,543,589.Google Scholar
  55. 55.
    Japanese Patent 23,806 (1973).Google Scholar
  56. 56.
    USSR Patent 300,022; French Patent 1,564,342.Google Scholar
  57. 57.
    West German Patent 929,692.Google Scholar
  58. 58.
    USA Patent 2,289,657.Google Scholar
  59. 59.
    Japanese Patent 2765.Google Scholar
  60. 60.
    USA Patent 2,510,135.Google Scholar
  61. 61.
    USA Patent 292,301; French Patent 1,543,596; Swiss Patent 466,495.Google Scholar
  62. 62.
    USA Patent 2,804,646.Google Scholar
  63. 63.
    German Patent 671,517.Google Scholar
  64. 64.
    Japanese Patent 23,489 (1973).Google Scholar
  65. 65.
    USA Patent 3,131,429.Google Scholar
  66. 66.
    West German Patent 1,660,144.Google Scholar
  67. 67.
    USA Patent 3,488,344; French Patent 1,542,879.Google Scholar
  68. 68.
    USSR Patent 385,458; USA Patent 3,689,620; Brit. Patent 1,337,573; French Patent 2,072,796; West Germany Patent 2,059,177.Google Scholar
  69. 69.
    USA Patent 1,997,930.Google Scholar
  70. 70.
    USA Patent 2,046,576.Google Scholar
  71. 71.
    USA Patent 2,046,575.Google Scholar
  72. 72.
    USA Patent 2,040,607.Google Scholar
  73. 73.
    USSR Patent 283,076.Google Scholar
  74. 74.
    USA Patent 2,871,512.Google Scholar
  75. 75.
    USA Patent 3,219,740.Google Scholar
  76. 76.
    USSR Patent 7858.Google Scholar
  77. 77.
    USA Patent 1,871,704.Google Scholar
  78. 78.
    USSR Inventor's Certificate 525,759 (1976); Byull. Izobr., No. 31 (1976).Google Scholar
  79. 79.
    USA Patent 2,892,675.Google Scholar
  80. 80.
    USA Patent 3,292,210; Japanese Patent 12046-41 (1966).Google Scholar
  81. 81.
    West German Patent 869676.Google Scholar
  82. 82.
    Japanese Patent 1164 (1954).Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • B. V. Korotkov
  • L. N. Seitova
  • N. A. Dorofeev
  • A. T. Serkov
  • G. A. Danilin

There are no affiliations available

Personalised recommendations