Environmental and Ecological Statistics

, Volume 1, Issue 1, pp 37–61 | Cite as

Environmental control and spatial structure in ecological communities: an example using oribatid mites (Acari, Oribatei)

  • Daniel Borcard
  • Pierre Legendre


We have recently proposed to use partial canonical ordinations to partition the variation of species abundance data into four additive components: environmental at a local scale, the spatial component of the environmental influence, pure spatial, and an undetermined fraction. By means of an example, we show how to use the information contained in these fractions to provide better insight into the data. In particular, the interpretation is assisted by separately mapping the various canonical axes and relating them to possible generating processes. We derive a general framework for the causal interpretation of the various fractions of this partition, which includes the environmental and the biotic control models, as well as historical dynamics.


biotic control canonical correspondence analysis cryptostigmatic mites environmental control historical dynamics mapping modeling ecological relationships spatial patterns variation partitioning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Birks, H.J.B., Juggins, S. and Line, J.M. (1990). Lake surface-water chemistry reconstructions from palaeolimnological data. In: The Surface Waters Acidification Programme (B.J.Mason), Cambridge University Press, pp. 301–13.Google Scholar
  2. Borcard, D. (1986). Une sonde et un extracteur destines a la récolte d'Acariens (Acari) dans les sphaignes (Sphagnum spp.).Bull. Soc. Entomol. Suisse,59, 283–8.Google Scholar
  3. Borcard, D. (1988). Les Acariens Oribates des sphaignes de quelques tourbieres du Haut-Jura suisse. PhD Thesis, Université de Neuchâtel, Switzerland.Google Scholar
  4. Borcard, D. (1991). Les Oribates des tourbieres du Jura suisse (Acari, Oribatei): écologie. 11. Les relations Oribates — environnement a la lumière du test de Mantel.Rev. d'Écol. Biol. Sol,28, 323–39.Google Scholar
  5. Borcard, D., Legendre, P. and Drapeau, P. (1992). Partialling out the spatial component of ecological variation.Ecology,73, 1045–55.Google Scholar
  6. Bray, R.J. and Curtis, J.T. (1957). An ordination of the upland forest communities of southern Wisconsin.Ecol. Monographs,27, 325–49.Google Scholar
  7. Cancela da Fonseca, J.P. and Poinsot-Balaguer, N. (1983). Les regimes alimentaires des Microarthropodes du sol en relation avec la decomposition de la matière organique.Bull. Soc. Zool. France,108, 371–88.Google Scholar
  8. Garay, I. and Nataf, L. (1982). Microarthropods as indicators of human trampling in sub-urban forests. In:Urban Ecology (R. Bornkamm, J.A. Lee and M.R.D. Seaward, eds) Blackwell, Oxford. pp. 201–207.Google Scholar
  9. Harper, P.-P. and Cloutier, L. (1985). Composition et phénologie de commuautés d'insectes du lac Geai, lac dystrophe des Laurentides (Quebec).Natur. Canadien (Revue d'Écol. System.),112, 405–15.Google Scholar
  10. Hutchinson, G.E. (l957). Concluding remarks. Cold Spring Harbor Symp.Quant. Biol.,22, 415–27.Google Scholar
  11. Isaaks, E.H. and Srivastava, R.M. (1989).Applied Geostatistics. Oxford University Press, New York.Google Scholar
  12. Lebrun, P., van Impe, G., de Saint Georges-Gridelet, D., Wauthy G. and André, H.M. (1991). The life strategies of mites. In:The Acari. Reproduction, Development and Life-history Strategies (R. Schuster and P.W. Murphy, eds) Chapman & Hall, London.Google Scholar
  13. Leduc, A., Drapeau, P., Bergeron, Y. and Legendre, P. (1992). Study of spatial components of forest cover using partial Mantel tests and path analysis.J. Veg. Sci.,3, 69–78.Google Scholar
  14. Legendre, P. and Fortin, M.-J. (1989). Spatial pattern and ecological analysis.Vegetatio,80, 107–38.Google Scholar
  15. Legendre, P. and Troussellier, M. (l988). Aquatic heterotrophic bacteria: modeling in the presence of spatial autocorrelation.Limnol. Oceanogr.,33, 1055–67.Google Scholar
  16. Legendre, P., Troussellier, M., Jarry, V. and Fortin, M.-J. (1989). Design for simultaneous sampling of ecological variables: from concepts to numerical solutions.Oikos,55, 30–42.Google Scholar
  17. Legendre, P. and Troussellier, M. (1993). Origin of spatial structures in aquatic bacterial communities: From hypotheses to numerical solutions. In:Trends in Microbial Ecology (R. Guerrero and C. Pedrós-Alió, eds) Proceedings of the Sixth International Symposium on Microbial Ecology (ISME-6), Barcelona, 6–11 September 1992. pp. 353–8Google Scholar
  18. Lindeman, R.L. (1942). The trophic-dynamic aspect of ecology.Ecology,23, 399–418.Google Scholar
  19. Mantel, N. (1967). The detection of disease clustering and a generalized regression approach. Cancer Res.,27, 209–20.Google Scholar
  20. Matthey, W. (1965). Signification de la butte a sphaignes dans l'évolution de la haute tourbière. Comptes Rendus Soc. Biogéog.,371-2, 119–30.Google Scholar
  21. May, R.M. (1984). An overview: real and apparent patterns in community structure. In:Ecological Communities: Conceptual Issues and the Evidence (D.R. Strong Jr, D. Simberloff, L.G. Abele and A.B. Thistle, eds) Princeton University Press. pp. 3–16.Google Scholar
  22. Plinski, M. and Magnin, E. (1979). Analyse écologique du phytoplancton de trois lacs des Laurentides (Quebec, Canada).Canadian J. Bot.,57, 2791–9.Google Scholar
  23. Quinn, J.F. and Dunham, A.E. (1983). On hypothesis testing in ecology and evolution.Am. Naturalist,122, 602–17.Google Scholar
  24. Siepel, H. (1989). Objective selection of indicator species for nature management. Comptes-rendus du Symposium ‘Invertébrés de Belgique', pp. 415–18.Google Scholar
  25. Smouse, P.E., Long, J.C. and Sokal, R.R. (1986). Multiple regression and correlation extensions of the Mantel test of matrix correspondence.System. Zool. 35, 627–32.Google Scholar
  26. Southwood, T.R.E. (l987). The concept and nature of the community. In:Organization of Communities: Past and Present (J.H.R. Gee and P.S. Giller, eds) Blackwell Scientific Publications, Oxford. pp. 3–27.Google Scholar
  27. Stevenson, A.C., Birks, H.J.B., Flower, R.J. and Battarbee, R.W. (l989). Diatom-based pH reconstruction of lake acidification using canonical correspondence analysis.Ambio,18, 228–33.Google Scholar
  28. ter Braak, C.J.F. (1986). Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis.Ecology,67, 1167–79.Google Scholar
  29. ter Braak, C.J.F. (1987a). The analysis of vegetation-environment relationships by canonical correspondence analysis.Vegetatio,69, 69–77.Google Scholar
  30. ter Braak, C.J.F. (1987b). Ordination. In:Data Analysis in Community and Landscape Ecology (R.H.G. Jongman, C.J.F. ter Braak and O.F.R. van Tongeren, eds) PUDOC, Wageningen. pp. 91–173.Google Scholar
  31. ter Braak, C.J.F. (1988a). Partial canonical correspondence analysis. In:Classification and Related Methods of Data Analysis (H.H. Block, ed.) North Holland Press, Amsterdam. pp. 551–8.Google Scholar
  32. ter Braak, C.J.F. (1988b). CANOCO — an extension of DECORANA to analyze species-environment relationships.Vegetatio,75, 159–60.Google Scholar
  33. ter Braak, C.J.F. (1990). Update notes: CANOCO version 3.10. Agricultural Mathematics Group, Wageningen, The Netherlands.Google Scholar
  34. Vannier, G. (1985). Mode d'exploitation et de partage des ressources alimentaires dans le système saphrophage par les microarthropodes du sol.Bull. d'Êcol.,16, 19–34.Google Scholar
  35. Wauthy, G., Noti, M.-I. and Dufrêne, M. (1989). Geographic ecology of soil oribatid mites in deciduous forests.Pedobiologia,33, 399–416.Google Scholar
  36. West, C.C. (1984). Micro-arthropod and plant species associations in two subantarctic terrestrial communities.Oikos,42, 66–73.Google Scholar
  37. Wiens, J.A. (1984). On understanding a non-equilibrium world: Myth and reality in community patterns and processes. In:Ecological Communities: Conceptual Issues and the Evidence (D.R. Strong Jr, D. Simberlofl; L.G. Abele and A.B. Thistle, eds) Princeton University Press. pp. 439–57.Google Scholar
  38. Whittaker, R.H. (1956). Vegetation of the Great Smoky Mountains.Ecol. Monographs,26, 1–80.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Daniel Borcard
    • 1
  • Pierre Legendre
    • 2
  1. 1.Institut de ZoologieUniversité de NeuchâtelNeuchâtelSwitzerland
  2. 2.Departemente de Sciences BiologiquesUniversity de MontrealMontrealCanada

Personalised recommendations