Journal of Materials Science

, Volume 25, Issue 1, pp 580–584 | Cite as

Improvements in mechanical properties of TiB2 by the dispersion of B4C particles

  • Eul Sson Kang
  • Chong Hee Kim


Densities up to 99% of the theoretical value were achieved by hot-pressing of TiB2-B4C composites at 1700° C for 1 h using 1 vol % Fe as a sintering aid. The microstructure consists of dispersed B4C particles in a fine-grained TiB2 matrix. Addition of B4C particles increases the fracture toughness of TiB2 (to 7.6 MPa m1/2 at 20 vol % B4C) and yields high fracture strength (to 700 MPa at 10 vol % B4C). Microstructural observations indicate that the improved strength is a result of a higher density, smaller grain size and intergranular fracture, and the toughness increase is a result of crack deflection around the B4C particles.


Polymer Grain Size Microstructure Mechanical Property Fracture Toughness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. V. Samsonov andB. A. Kovenskaya, “Boron and Refractory Borides”, edited by V. I. Matkovich (Springer-Verlag, New York, 1977) p. 19.Google Scholar
  2. 2.
    V. J. Tennery, C. B. Finch, C. S. Yust andG. W. Clark, “Science of Hard Materials”, edited by R. K. Viswanadham (Plenum, New York, 1983) p. 891.Google Scholar
  3. 3.
    T. Lundstrom, “Boron and Refractory Borides”, edited by V. I. Matkovich (Springer-Verlag, New York, 1977) p. 351.Google Scholar
  4. 4.
    J. B. Todd,J. Metals 33(9) (1981) 42.Google Scholar
  5. 5.
    M. L. Wilkins, “Boron and Refractory Borides”, edited by V. I. Matkovich (Springer-Verlag, New York, 1977) p. 633.Google Scholar
  6. 6.
    R. M. McMeeking andA. G. Evans,J. Amer. Ceram. Soc. 65 (1982) 242.Google Scholar
  7. 7.
    A. G. Evans andK. T. Faber,ibid. 67 (1984) 255.Google Scholar
  8. 8.
    G. C. Wei andP. F. Becher,ibid. 67 (1984) 571.Google Scholar
  9. 9.
    A. G. Evans, “Fracture in Ceramic Materials”, edited by A. G. Evans (Noyes, New Jersey, 1984) p 1.Google Scholar
  10. 10.
    K. T. Faber andA. G. Evans,Acta Metall. 31 (1983) 565.Google Scholar
  11. 11.
    Idem, J. Amer. Ceram. Soc. 66 (1983) c-94.Google Scholar
  12. 12.
    M. K. Janney,Amer. Ceram. Soc. Bull. 66 (1987) 322.Google Scholar
  13. 13.
    C. H. McMurtry, W. D. G. Boecker, S. G. Seshdri, J. S. Zanghi andJ. E. Garnier,ibid. 66 (1987) 325.Google Scholar
  14. 14.
    E. S. Kang, C. W. Jang, C. H. Lee, C. H. Kim andD. H. Kim,J. Amer. Ceram. Soc. to be published.Google Scholar
  15. 15.
    R. H. Marion, “Fracture Mechanics Applied to Brittle Materials,” edited by S. W. Freiman (ASTM STP 678, Pennsylvania, 1979) p. 103.Google Scholar
  16. 16.
    H. Pastor, “Boron and Refractory Borides,” edited by V. I. Matkovich (Springer-Verlag, New York, 1977) p. 457.Google Scholar
  17. 17.
    R. W. Rice, S. W. Freiman andP. F. Becher,J. Amer. Ceram. Soc. 64 (1981) 345.Google Scholar
  18. 18.
    R. W. Rice andS. W. Freiman,ibid 64 (1981) 350.Google Scholar
  19. 19.
    P. F. Becher andM. K. Ferber,Acta Metall. 33 (1985) 1217.Google Scholar
  20. 20.
    D. K. Kim andC. H. Kim,Adv. Ceram. Mater. 3 (1988) 52.Google Scholar
  21. 21.
    A. G. Evans andT. G. Langdon,Prog. Mater. Sci. 21 (1976) 171.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1990

Authors and Affiliations

  • Eul Sson Kang
    • 1
  • Chong Hee Kim
    • 1
  1. 1.Department of Materials Science and EngineeringKorea Advanced Institute of Science and TechnologySeoulKorea

Personalised recommendations