Skip to main content
Log in

Plasmid-determined resistance to arsenic and antimony inPseudomonas aeruginosa

  • Research Article
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Resistance to arsenic salts in aPseudomonas aeruginosa clinical isolate was shown to be determined by a 100 kb transferable plasmid. The resistance pattern included arsenate, arsenite, and antimonate ions. Arsenate and arsenite resistances were inducible by previous exposure of cultures to subinhibitory amounts of either of the two ions. Phosphate ions protectedP. aeruginosa cells from the toxic effects of arsenate but did not alter arsenite toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Casse F, Boucher C, Julliot JS, Michel M & Denarie J (1979) Identification and characterization of large plasmids inRhizobium meliloti using agarose gel electrophoresis. J. Gen. Microbiol. 113: 229–242

    Google Scholar 

  • Cervantes-Vega C, Chávez J, Córdova NA, de laMora P & Velasco JA (1986) Resistance to metals byPseudomonas aeruginosa clinical isolates. Microbios 48: 159–163

    Google Scholar 

  • Chen CM, Misra TK, Silver S & Rosen BP (1986) Nucleotide sequence of the structural genes for an anion pump. The plasmid-encoded arsenical resistance operon. J. Biol. Chem. 261: 15030–15038

    Google Scholar 

  • Chen CM, Mobley HLT & Rosen BP (1985) Separate resistances to arsenate and arsenite (antimonate) encoded by the arsenical resistance operon of R factor R773. J. Bacteriol. 161: 758–763

    Google Scholar 

  • Efstathiou JD & McKay LL (1977) Inorganic salts resistance associated with a lactose-fermenting plasmid inStreptococcus lactis. J. Bacteriol. 130: 257–265

    Google Scholar 

  • Gotz F, Zabielski F, Philipson L & Lindberg M (1983) DNA-homology between the arsenate resistance plasmid pSX267 fromStaphylococcus xylosus and the penicillinase plasmid pI258 fromStaphylococcus aureus. Plasmid 9: 126–127

    Google Scholar 

  • Hedges WR & Baumberg S (1973) Resistance to arsenic compounds conferred by a plasmid transmissible between strains ofEscherichia coli. J. Bacteriol. 115: 459–460

    Google Scholar 

  • Holloway BW (1965) Variations in restriction and modification following increase in growth temperature inPseudomonas aeruginosa. Virology 25: 634–642

    Google Scholar 

  • Meyers JA, Sanchez D, Elwell LP & Falkow S (1976) Simple agarose gel electrophoretic method for the identification and characterization of plasmid deoxyribonucleic acid. J. Bacteriol. 127: 1529–1537

    Google Scholar 

  • Misra TK, Nucifora G, Chu L & Silver S (1989) Plasmid-determined heavy metal resistances: arsenic, cadmium and mercury. In: Hamer DH & Winge DR (Eds) Metal Ion Homeostasis: Molecular Biology and Chemistry (pp 417–426). Alan R. Liss, New York

    Google Scholar 

  • Mobley HLT & Rosen BP (1982) Energetics of plasmid-mediated arsenate resistance inEscherichia coli. Proc. Natl. Acad. Sci. USA 79: 6119–6122

    Google Scholar 

  • Nakahara H, Ishikawa T, Sarai Y & Kondo I (1977) Frequency of heavy-metal resistance in bacteria from inpatients in Japan. Nature 266: 165–167

    Google Scholar 

  • Novick RP & Roth C (1968) Plasmid-linked resistance to inorganic salts inStaphylococcus aureus. J. Bacteriol. 95: 1335–1342

    Google Scholar 

  • Rosen BP & Borbolla MG (1984) A plasmid-encoded arsenite pump produces arsenite resistance inEscherichia coli. Biochem. Biophys. Res. Commun. 124: 760–765

    Google Scholar 

  • Rosen BP, Weigel U, Karkaria C & Gangola P (1988) Molecular characterization of an anion pump. The ArsA gene product is an arsenite (antimonate)-stimulated ATPase. J. Biol. Chem. 263: 3067–3070

    Google Scholar 

  • Silver S (1978) Transport of cations and anions. In: Rosen BP (Ed) Bacterial Transport (pp 221–234). Marcel Dekker, New York

    Google Scholar 

  • Silver S, Budd K, Leahy KM, Shaw WV, Hammond D, Novick RP, Willsky GR, Malamy ML & Rosenberg H (1981) Inducible plasmid-determined resistance to arsenate, arsenite, and antimony (III) inEscherichia coli andStaphylococcus aureus. J. Bacteriol. 146: 983–996

    Google Scholar 

  • Silver S & Keach D (1982) Energy-dependent arsenate efflux: the mechanism of plasmid-mediated resistance. Proc. Natl. Acad. Sci. USA 79: 6114–6118

    Google Scholar 

  • Silver S & Misra TK (1988) Plasmid-mediated heavy metal resistances. Annu. Rev. Microbiol. 42: 717–743

    Google Scholar 

  • Silver S & Nakahara H (1983) Bacterial resistance to arsenic compounds. In: Lederer WH & Fernsterheim RJ (Eds) Arsenic: Industrial, Biomedical and Environmental Perspectives (pp 190–199). Van Nostrand Rheinhold, New York

    Google Scholar 

  • Silver S, Nucifora G, Chu L & Misra TK (1989) Bacterial resistance ATPases: primary pumps for exporting toxic cations and anions. Trends Biochem. Sci. 14: 76–80

    Google Scholar 

  • Smith HW (1978) Arsenic resistance in Enterobacteria: its transmission by conjugation and by phage. J. Gen. Microbiol. 109: 49–56

    Google Scholar 

  • Summers AO, Jacoby GA, Swartz MN, McHugh G & Sutton L (1978) Metal cation and oxyanion resistances in plasmids of Gram negative bacteria. In: Schlessinger D (Ed) Microbiology-1978 (pp 128–131). American Society for Microbiology, Washington, DC

    Google Scholar 

  • Tisa LS & Rosen BP (1990) Molecular characterization of an anion pump. The ArsB protein is the membrane anchor for the ArsA protein. J. Biol. Chem. 265: 190–194

    Google Scholar 

  • Willsky GR & Malamy MH (1980) Effect of arsenate on inorganic phosphate transport inEscherichia coli. J. Bacteriol. 144: 366–374

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cervantes, C., Chávez, J. Plasmid-determined resistance to arsenic and antimony inPseudomonas aeruginosa . Antonie van Leeuwenhoek 61, 333–337 (1992). https://doi.org/10.1007/BF00713941

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00713941

Key words

Navigation