Skip to main content
Log in

The stationary state of epithelia

  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

A tissue is a geometrical, space-filling, random cellular network; it remains in this steady state while individual cells divide. Cell division is a local, elementary topological transformation which establishes statistical equilibrium of the structure. We describe the physical conditions to maintain stationary the epidermis (of mammals or of the cucumber), in spite of the fact that cells constantly divide and die. Specifically, we study the statistical equilibrium of the basal layer, a corrugated surface filled with cells, constituting a two-dimensional topological froth. Cells divide and detach from the basal layer, and these two topological transformations are responsible for the stationary state of the epidermis. The topological froth is capable of responding rapidly and locally to external constraints, and is a good illustration of the plasticity of random cellular networks.

Statistical equilibrium is controlled by entropy, both as a measure of disorder and as information, and is characterized by observable relations between average cell shapes and sizes. The technique can be applied to any random cellular network in dynamical equilibrium. Mitosis as the dominating topological transformation and the fact that the distribution of cell shapes is very narrow are the only inputs specific to biology.

Resume

Un tissu est, à première vue, un pavage aléatoire d'une surface ou d'un volume par des polygones (polyèdres) topologiques, les cellules. Ce pavage reste dans un état stationnaire alors que les cellules se divisent constamment. Nous décrivons les conditions physiques nécessaires à l'état stationnaire de l'épiderme (des mammifères et du concombre), en dépit du fait que ses cellules se divisent et meurent. En particulier, nous étudions l'équilibre statistique de la couche basale, une surface couverte de cellules constituant une mousse topologique aléatoire. Les cellules se divisent et se détachent de la couche basale, et ces transformations topologiques sont responsable de l'état stationnaire de l'épiderme. Cette mousse topologique est capable de répondre rapidement et localement à des contraintes externes. C'est un exemple de plasticité de structures cellulaires aléatoires.

L'équilibre statistique est contrôlé par l'entropie qui est ici à la fois une mesure du désordre et une quantité d'information. Il est caractérisé par des relations facilement observables entre les formes des cellules et leurs dimensions. Les seuls éléments spécifiques aux tissus biologiques sont la mitose comme transformation topologique dominante, et l'étroitesse de la distribution des formes de cellules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aboav, D.A. (1970). The arrangement of grains in a polycrystal. Metallogr. 3: 383.

    Google Scholar 

  • Aubert, J.H., A.M. Kraynick and P.B. Rand (1986). Aqueous Foams. Scientific American 255: 58.

    Google Scholar 

  • Barrandon Y and H. Green (1985). Cell size as a determinant of the clone-forming ability of human keratinocytes. Proc. Natl. Acad. Sci. USA, 82.

  • Berndl, K., J. Käs, R. Lipowsky, E. Sackmann and U. Seifert (1991) Vesicle shapes and shape transformations; A systematic study. In: L. Peliti, ed., Biologically Inspired Physics, p. 95. Plenum.

  • Blanc M. and A. Mocellin (1979). Grain coordination in plane sections of polycrystals. Acta Metall. 27: 1231.

    Google Scholar 

  • Bouligand, Y. (1990). Comparative geometry of cytomembranes and water-lipid systems. J. Physique 51: C7–35.

    Google Scholar 

  • Delannay, R., G. Le Caër and M. Khatun (1992). Random cellular structures generated from a 2D Ising ferromagnet. J. Phys. A 25: 6193.

    Google Scholar 

  • Delannay, R. and G. Le Caër (1994). Topological characteristics of 2D cellular structures generated by fragmentation. Phys. Rev. Letters 73: 1553.

    Google Scholar 

  • Delaye, M. and A. Tardieu (1983). Short-range order of crystallin proteins accounts for eye lens transparency. Nature 302: 415.

    Google Scholar 

  • Dormer, K.J. (1980). Fundamental Tissue Geometry for Biologists. Cambridge Univ. Press.

  • Dubertret, B. (1994). Etude de l'influence de la mort cellulaire sur l'équilibre statistique de l'épiderme des mammifères. Thesis, ULP, Strasbourg.

    Google Scholar 

  • Errera, L. (1886). Sur une condition fondamentale d'équilibre des cellules vivantes. Comptes Rendus Acad. Sci. 103: 822.

    Google Scholar 

  • Flyvbjerg, H. (1993). Model for coarsening froths and foams. Phys. Rev. E 47: 4037.

    Google Scholar 

  • Godrèche, C., I. Kostov and I. Yekutieli (1992). Topological correlations in cellular structures and planar graphy theory. Phys. Rev. Letters 69: 2674.

    Google Scholar 

  • Hales, S. (1727). Vegetable Staticks. Innis and Woodward.

  • Le Caër, G. and R. Delannay (1993). Correlations in topological models of 2D random cellular structures. J. Phys. A 26: 3931.

    Google Scholar 

  • Le Caër, G. and R. Delannay (1995). Topological models of 2D fractal cellular structures. J. Phys I (Paris).

  • Lemaître, J., A. Gervois, J.-P. Troadec, N. Rivier, M. Ammi, L. Oger and D. Bideau (1993). Arrangements of cells in Voronoi tessellations of monosize packings of discs. Phil. Mag. B 67: 347.

    Google Scholar 

  • Lemaître, J., J.-P. Troadec, A. Gervois and D. Bideau (1991). Experimental study of densification of disk assemblies. Europhys. Lett. 14: 77.

    Google Scholar 

  • Lewis, F.T. (1928). The correlation between cell division and the shapes and sizes of prismatic cells in the epidermis ofcucumis. Anat. Records 38: 341.

    Google Scholar 

  • Lewis, F.T. (1930). A volumetric study of the growth and cell division in two types of epithelium, the longitudinally prismatic epidermal cells oftradescantia and the radially prismatic epidermal cells ofcucumis. Anat, Records 47: 59.

    Google Scholar 

  • Lewis, F.T. (1931). A comparison between the mosaic of polygons in a film of artificial emulsion and the pattern of simple epithelium in surface view (cucumber epidermis and human amnion). Anat. Records 50: 235.

    Google Scholar 

  • Lipowsky, R. (1990). Critical behavior of vesicles and membranes. J. Physique 51: C7–243.

    Google Scholar 

  • Matzke, E.B. (1950). In the twinkling of an cye. Bull. Torrey Bot. Club 27: 222.

    Google Scholar 

  • Mombach, J.C.M., M.A.Z. Vasconcellos, R.M.C. de Almeida (1990). Arrangement of cells in vegetable tissues. J. Phys. D. 23: 600.

    Google Scholar 

  • Montagna W. and P.F. Parakkal (1974) In: The Structure and Function of Skin. Academic Press (3rd edition), Chap. 2.

  • Peshkin, M.A., K.J. Strandburg and N. Rivier (1991). Entropic predictions for cellular networks. Phys. Rev. Letters 67: 1803.

    Google Scholar 

  • Pyshnov, M.B. (1980). Topological solution for cell proliferation in intestinal crypt. I-Elastic growth without cell loss. J. Theor. Biol. 87: 189.

    Google Scholar 

  • Rivier, N. (1988). Statistical geometry of tissues. In: I. Lamprecht and A.I. Zotin, eds., Thermodynamics and Pattern Formation in Biology, p. 415. de Gruyter.

  • Rivier, N. (1993). Order and disorder in packings and froths. In: D. Bideau and A. Hansen, eds., Disorder and Granular Media, p. 55. North Holland.

  • Rivier, N. (1994). Maximum entropy for random cellular structures. In: P. Grassberger and J.-P. Nadal, eds., From Statistical Mechanics to Statistical Inference and back, p. 77. Kluwer.

  • Rivier, N., X. Arcenegui-Siemens and G. Schliecker (1995). Cell division and evolution of biological tissues. In: D. Beysens, X. Campi and E. Perfferkorn, eds., Fragmentation Physics, p. 266. World Scientific.

  • Rivier N. and B. Dubertret (1995). Why does skin stay smooth?. Phil. Mag. B 72: 311.

    Google Scholar 

  • Rivier N. and A. Lissowski (1982). On the correlation between sizes and shapes of cells in epithelial mosaics. J. Phys. A 15: L143.

    Google Scholar 

  • Smoljaninov V.V. (1980). Mathematical Models of Tissues. Nauka (in Russian).

  • Stavans, J., E. Domany and D. Mukamel (1991). Universality and pattern selection in two-dimensional cellular structures. Europhys. Letters 15: 479.

    Google Scholar 

  • Telley, H. (1989). Modélisation et Simulation de la Croissance des Mosaiques Polycristallines. Thesis, EPFL, Lausanne.

    Google Scholar 

  • Telley, H., Th.M. Liebling and A. Mocellin (1995). The Laguerre model of grain growth in two dimensions. I: Cellular structures viewed as dynamical Laguerre tessellations. II: Examples of coarsening simulations. Phil. Mag. to appear.

  • Thompson, D'A.W. (1942). On Growth and Form. Cambridge Univ. Press (2nd. ed.), p. 363, 482.

  • Weaire D. and N. Rivier (1984). Soap, cells and statistics-Random patterns in two dimensions. Contemp. Phys. 25: 59.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivier, N., Schliecker, G. & Dubertret, B. The stationary state of epithelia. Acta Biotheor 43, 403–423 (1995). https://doi.org/10.1007/BF00713562

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00713562

Keywords

Navigation