Advertisement

Acta Biotheoretica

, Volume 43, Issue 4, pp 373–386 | Cite as

Spatio-temporal self-organization of bone mineral metabolism and trabecular structure of primary bone

  • B. Courtin
  • A. -M. Perault-Staub
  • J. -F. Staub
Article

Abstract

A nonlinear two-variable reaction-diffusion model of bone mineral metabolism, built from an overall self-oscillatory compartmental model of calcium metabolism in vivo, has been studied for its ability to generate spatial and spatio-temporal self-organizations in a two-dimensional space. Analytical and numerical results confirm the theoretical properties previously described for this kind of model. In particular, it is shown that, for a given set of reactional parameter values and certain values of the ratio of the two diffusion coefficients, there exists a set of unstable wavenumbers leading spontaneously to the development, from the homogeneous steady state, of either different types of stationary spatial patterns (hexagonal, striped and re-entrant hexagonal patterns) or more or less complex spatio-temporal expressions. We discuss the relevance of analogies established between some spatial or spatio-temporal structures predicted by the model and some peculiar features of the primary bone trabecular architecture which appear during embryonic ossification.

Keywords

Diffusion Coefficient Spatial Pattern Compartmental Model Reactional Parameter Peculiar Feature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arneodo, A., J. Elezgaray, J. Pearson and T. Russo (1991). Instabilities of front patterns in reaction-diffusion systems. Physica D 49: 141–160.Google Scholar
  2. Aronow, M.A., L.C. Gerstenfeld, T.A. Owen, M.S. Tassinari, G.S. Stein and J.B. Lian (1990). Factors that promote progressive development of the osteoblast phenotype in cultured fetal rat calvaria cells. J. Cell. Physiol. 143: 213–221.Google Scholar
  3. Caplan, A.I. and D.G. Pechak (1987). The cellular and molecular embryology of bone formation. In: W.A. Peck, ed., Bone and Mineral Research 5: 117–181. Elsevier Sci. Publ.Google Scholar
  4. Ciliberto, S., P. Coullet, J. Lega, E. Pamapaloni and C. Perez-Garcia (1990). Defects in roll-hexagon competition. Phys. Rev. Lett. 65: 2370–2373.Google Scholar
  5. Collin-Osdoby, P. (1994). Role of vascular endothelial cells in bone biology. J. Cell. Biochem. 55: 304–309.Google Scholar
  6. De Kepper, P., V. Castets, E. Dulos and J. Boissonade (1991). Turing-type chemical patterns in the chlorite-iodide-malonic acid reaction. Physica D 49: 161–169.Google Scholar
  7. Dillaman, R.M., K.M. Wilbur and M.A. Crenshaw (1979). Growth of embryonic chick tibiae in ovo and in vitro: A scanning electron microscope study. Calcif. Tiss. Intl. 27: 33–40.Google Scholar
  8. Dufiet, V. and J. Boissonade (1992a). Numerical studies of Turing patterns selection in a two-dimensional system. Physica A 188: 158–171.Google Scholar
  9. Dufiet, V. and J. Boissonade (1992b). Conventional and unconventional Turing patterns. J. Chem. Phys. 96: 664–673.Google Scholar
  10. Edelstein-Keshet, L. (1988). Mathematical Models in Biology. New York, Random House.Google Scholar
  11. Hancox, N.M. (1972). Biology of Bone. Cambridge, Cambridge University Press.Google Scholar
  12. Hindsmarsh, A.C. (1980). LSODE and LSODI, two new initial value ordinary differential equation solvers. ACM-signum Newsletter 15: 10–11.Google Scholar
  13. Larson, M.A. and J. Garside (1986). Solute clustering and interfacial tension. J. of Crystal Growth 76: 88–92.Google Scholar
  14. Lengyel, I. and I.R. Epstein (1992). A chemical approach to designing Turing patterns in reaction-diffusion systems. Proc. Natl. Acad. Sci. USA 89: 3977–3979.Google Scholar
  15. Meinhardt, H. (1982). Models of Biological Patterns Formation. New York, Academic Press.Google Scholar
  16. Milhaud, G., A.-M. Perault-Staub, and J.-F. Staub (1972). Diurnal variation of plasma calcium and calcitonin function in the rat. J. Physiol. (London) 222: 559–567.Google Scholar
  17. Murray, J.D. (1989). Mathematical Biology. Berlin, Springer.Google Scholar
  18. Ogden, J.A. (1980). Chondro-osseous development and growth. In: M.R. Urist, ed., Fundamental and Clinical Bone Physiology: 108–171. Philadelphia, Lippincott Comp.Google Scholar
  19. Ouyang, Q. and H.L. Swinney (1991). Transition from a uniform state to hexagonal and striped Turing patterns. Nature 352: 610–612.Google Scholar
  20. Perault-Staub, A.-M., J.-F. Staub and G. Milhaud (1990). Extracellular calcium homeostasis. In: J.N.M. Heersche and J.A. Kanis, eds., Bone and Mineral Research 7: 1–102. Elsevier Sci. Publ.Google Scholar
  21. Staub, J.-F., P. Tracqui, P. Brezillon, G. Milhaud and A.-M. Perault-Staub (1988). Calcium metabolism in the rat: A temporal self-organized model. Am. J. Physiol. 254: R134-R149.Google Scholar
  22. Staub, J.-F., P. Tracqui, S. Lausson, G. Milhaud and A.-M. Perault-Staub (1989). A physiological view of in vivo calcium dynamics: The regulation of a nonlinear self-organized system. Bone 10: 77–86.Google Scholar
  23. Talmage, R.V., J.H. Roycroft and J.J.B. Anderson (1975). Daily fluctuations in plasma calcium, phosphate, and their radionuclide concentrations in the rat. Calcif. Tissue Res. 17: 91–102.Google Scholar
  24. Tracqui, P. (1993). Homoclinic tangencies in an autocatalytic model of interfacial processes at bone surface. Physica D 62: 275–289.Google Scholar
  25. Tracqui, P., A.-M. Perault-Staub, G. Milhaud and J.-F. Staub (1987). Theoretical study of a two-dimensional autocatalytic model for calcium dynamics at extracellular fluid/bone interface. Bull. Math. Biol. 49: 597–613.Google Scholar
  26. Tracqui, P., J.-F. Staub and A.-M. Perault-Staub (1989). Analysis of degenerate Hopf bifurcations of calcium metabolism. Nonlinear Anal.: Th. Meth. Appl. 13: 429–457.Google Scholar
  27. Tracqui, P., J.-F. Staub and A.-M. Perault-Staub (1992). Modelling of in vivo calcium metabolism. II. Minimal structure or maximal dynamic diversity: the interplay of biological constraints. Acta Biotheoretica 40: 103–111.Google Scholar
  28. Turing, A.M. (1952). The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. Lond. B 237: 37–72.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • B. Courtin
    • 1
  • A. -M. Perault-Staub
    • 1
  • J. -F. Staub
    • 1
  1. 1.CNRS URA 1432LRO, Faculté de Médecine Lariboisière-Saint-LouisParisFrance

Personalised recommendations