Boundary-Layer Meteorology

, Volume 69, Issue 1–2, pp 101–121 | Cite as

Heat and water vapour fluxes and scalar roughness lengths over an Antarctic ice shelf

  • J. C. King
  • P. S. Anderson
Article

Abstract

We present eddy-correlation measurements of heat and water vapour fluxes made during the Antarctic winter. The surface layer was stably stratified throughout the period of observation and sensible heat fluxes were always directed downwards. However, both upward and downward water vapour fluxes were observed. Their magnitude was generally small and the latent heat flux was not a significant fraction of the surface energy budget. The variation of heat and water vapour fluxes with stability is well described by Monin-Obukhov similarity theory but the scalar roughness lengths for heat and water vapour appear to be much larger than the momentum roughness length. Possible explanations of this effect are discussed.

Keywords

Heat Flux Water Vapour Latent Heat Significant Fraction Latent Heat Flux 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreas, E. L.: 1986, ‘A New Method of Measuring the Snow-Surface Temperature’,Cold Reg. Sci. Tech. 12, 139–156.Google Scholar
  2. Andreas, E. L.: 1987, ‘A Theory for the Scalar Roughness and the Scalar Transfer Coefficient over Snow and Sea Ice’,Boundary-Layer Meteorol. 38, 159–184.Google Scholar
  3. Andreas, E. L.: 1989, ‘Comments on “A Physical Bound on the Bowen Ratio”’J. Appl. Meteorol. 28, 1252–1254.Google Scholar
  4. Brutsaert, W.: 1975, ‘The Roughness Length for Water Vapor, Sensible Heat and Other Scalars’,J. Atmos. Sci. 32, 2028–2031.Google Scholar
  5. Buck, A. L.: 1976, ‘The Variable-Path Lyman-alpha Hygrometer and its Operating Characteristics’,Bull. Amer. Meteorol. 57, 1113–1118.Google Scholar
  6. Budd, W. F.: 1966, ‘The Drifting of Nonuniform Snow Particles’, in M. J. Rubin (ed.),Antarctic Research Series, vol. 9.Studies in Antarctic Meteorology, pp. 59–70, American Geophysical Union, Washington.Google Scholar
  7. Budd, W. F. and Smith, I. N.: 1985, ‘The State of Balance of the Antarctic Ice Sheet, an Updated Assessment 1984’, inGlaciers, Ice Sheets and Sea Level: Effects of a CO 2-induced Climatic Change, pp. 172–177, National Academy Press, Washington.Google Scholar
  8. Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: 1971, ‘Flux-Profile Relationships in the Atmospheric Surface Layer’,J. Atmos. Sci. 28, 181–189.Google Scholar
  9. de la Casinière, A. C.: 1974, ‘Heat Exchange over a Melting Snow Surface’,J. Glaciol. 13, 55–72.Google Scholar
  10. Duynkerke, P. G.: 1992, ‘The Roughness Length for Heat and other Vegetation Parameters for a Surface of Short Grass’,J. Appl. Meteorol. 31, 579–586.Google Scholar
  11. Dyer, A. J.: 1967, ‘The Turbulent Transport of Heat and Water Vapour in the Unstable Atmosphere’,Q. J. R. Meteorol. Soc. 93, 501–508.Google Scholar
  12. Garratt, J. R.: 1992,The Atmospheric Boundary Layer, Cambridge University Press, Cambridge.Google Scholar
  13. Garratt, J. R. and Brost, R. A.: 1981, ‘Radiative Cooling Effects within and above the Nocturnal Boundary Layer’,J. Atmos. Sci. 38, 2730–2746.Google Scholar
  14. Grant, A. L. M. and Watkins, R. D.: 1589, ‘Errors in Turbulence Measurements with a Sonic Anemometer’,Boundary-Layer Meteorol. 46, 181–194.Google Scholar
  15. Guest, P. S. and Davidson, K. L.: 1992, ‘A Study of the Factors Controlling the Value of the Surface Temperature of Sea Ice’, inPreprints, Third Conference on Polar Meteorology and Oceanography, pp. 54–57, Amer. Meteorol. Soc., Boston.Google Scholar
  16. Halherstam, I. and Schieldge, J. P.: 1981, ‘Anomalous Behaviour of the Atmospheric Surface Layer over a Melting Snowpack’,J. Appl. Meteorol. 20, 255–265.Google Scholar
  17. Harding, R. J., Entrasser, N., Escher-Vetter, H., Jenkins, A., Kaser, G., Kuhn, M., Morris, E. M., and Tanzer, G.: 1989, ‘Energy and Mass Balance Studies in the Firn Area of the Hintereisferner’, in J. Oerlemans (ed.),Glacier Fluctuations and Climate Change, pp. 325–341, Kluwer, Dordrecht.Google Scholar
  18. Hicks, B. B. and Martin, H. C.: 1972, ‘Atmospheric Turbulent Fluxes over Snow’,Boundary-Layer Meteorol. 2, 496–502.Google Scholar
  19. Hignett, P.: 1992, ‘Corrections to Temperature Measurements with a Sonic Anemometer’,Boundary-Layer Meteorol. 61, 175–187.Google Scholar
  20. Högström, U.: 1988, ‘Non-Dimensional Wind and Temperature Profiles in the Atmospheric Surface Layer: A Re-evaluation’,Boundary-Layer Meteorol. 42, 55–78.Google Scholar
  21. Joffre, S. M.: 1982, ‘Momentum and Heat Transfers in the Surface Layer over a Frozen Sea’,Boundary-Layer Meteorol. 24, 211–229.Google Scholar
  22. Jonsson, S.: 1992, ‘Local Climate and Mass Balance of a Blue-Ice Area in Western Dronning Maud Land, Antarctica’,Zeit. Gletsch. Glaz. 26, 11–29.Google Scholar
  23. Kaimal, J. C.: 1969, ‘Measurements of Momentum and Heat Flux Variations in the Surface Boundary Layer’,Rad. Sci. 4, 1147–1153.Google Scholar
  24. Kaimal, J. C. and Gaynor, J. E.: 1991, ‘Another Look at Sonic Thermometry’,Boundary-Layer Meteorol. 56, 401–410.Google Scholar
  25. King, J. C.: 1990, ‘Some Measurements of Turbulence over an Antarctic Ice Shelf’,Q. J. R. Meteorol. Soc. 116, 379–400.Google Scholar
  26. King, J. C. and Anderson, P. S.: 1988, ‘Installation and Performance of the STABLE Instrumentation at Halley’,BAS Bulletin 79, 65–77.Google Scholar
  27. King, J. C., Mobbs, S. D., Rees, J. M., Anderson, P. S., and Culf, A. D.: 1989, ‘The Stable Antarctic Boundary Layer Experiment at Halley Station’,Weather 44, 398–405.Google Scholar
  28. Kohsiek, W., de Bruin, H. A. R., The, H., and van den Hurk, B.: 1993, ‘Estimations of the Sensible Heat Flux of a Semi-Arid Area using Surface Radiative Temperature Measurements’,Boundary-Layer Meteorol. 63, 213–230.Google Scholar
  29. Moore, C. J.: 1986, ‘Frequency Response Corrections for Eddy Correlation Systems’,Boundary-Layer Meteorol. 37, 17–37.Google Scholar
  30. Morris, E. M.: 1989, ‘Turbulent Transfer over Snow and Ice’,J. Hydrol. 105, 205–223.Google Scholar
  31. Munro, D. S.: 1989, ‘Surface Roughness and Bulk Heat Transfer on a Glacier: Comparison with Eddy Correlation’,J. Glaciol. 35, 343–348.Google Scholar
  32. Oke, T. R.: 1970, ‘The Temperature Profile near the Ground on Calm Clear Nights’,Q. J. R. Meteorol. Soc. 96, 14–23.Google Scholar
  33. Philip, J. R.: 1987, ‘A Physical Bound to the Bowen Ratio’,J. Clim. App. Meteorol. 26, 1043–1045.Google Scholar
  34. Pomeroy, J. W.: 1988, ‘Wind Transport of Snow’, Ph.D. thesis, University of Saskatchewan.Google Scholar
  35. Radok, U.: 1977, ‘Snow Drift’,J. Glaciol.,19, 123–139.Google Scholar
  36. Thorpe, M. R., Banke, E. G., and Smith, S. D.: 1973, ‘Eddy Correlation Measurements of Evaporation and Sensible Heat Flux over Arctic Sea Ice’,J. Geophys. Res. 78, 3573–3584.Google Scholar
  37. Warhaft, Z.: 1976, ‘Heat and Moisture Flux in the Stratified Boundary Layer’,Q. J. R. Meteorol. Soc. 102, 703–707.Google Scholar
  38. Webb, E. K.: 1970, ‘Profile Relationships: The Log-Linear Range, and Extension to Strong Stability’,Q. J. R. Meteorol. Soc. 96, 67–90.Google Scholar
  39. Wood, N. and Mason, P. J.: 1991, ‘The Influence of Static Stability on the Effective Roughness Lengths for Momentum and Heat Transfer’,Q. J. R. Meteorol. Soc. 117, 1025–1056.Google Scholar
  40. Wyngaard, J. C. and Zhang, S.-F.: 1985, ‘Transducer Shadow Effects on Turbulence Spectra Measured by Sonic Anemometers’,J. Atmos. Ocean. Tech. 2, 548–558.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • J. C. King
    • 1
  • P. S. Anderson
    • 1
  1. 1.Natural Environment Research CouncilBritish Antarctic SurveyCambridgeUK

Personalised recommendations