Journal of Muscle Research & Cell Motility

, Volume 6, Issue 2, pp 129–151 | Cite as

The structure of F-actin

  • Edward H. Egelman


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AMOS, L. A. (1985) The structure of muscle filaments studied by electron microscopy.Ann. Rev. Biophys. 14, 291–313.Google Scholar
  2. AMOS, L. A., HUXLEY, H. E., HOLMES, K. C., GOODY, R. S. & TAYLOR, K. A. (1982) Structural evidence that myosin heads may interact with two sites on F-actin.Nature 299, 467–9.Google Scholar
  3. CARLSSON, L., NYSTROM, L.-E., LINDBERG, U., KANNAN, K. K., CID-DRESDNER, H., LOVGREN, S. & JORNVALL, H. (1976) Crystallization of a non-muscle actin.J. molec. Biol. 105, 353–66.Google Scholar
  4. EGELMAN, E. H. & DEROSIER, D. J. (1983a) A model for F-actin derived from image analysis of isolated filaments.J. molec. Biol. 166, 623–9.Google Scholar
  5. EGELMAN, E. H. & DEROSIER, D. J. (1983b) Structural studies of F-actin. InActin: Its Structure and Function in Muscle and non-Muscle Cells (edited by DOS REMEDIOS, C. and BARDEN, J.), pp. 17–24. New York, London: Academic Press.Google Scholar
  6. EGELMAN, E. H., FRANCES, N. & DEROSIER, D. J. (1982) F-actin is a helix with a random variable twist.Nature 298, 131–5.Google Scholar
  7. EGELMAN, E. H., FRANCES, N. & DEROSIER, D. J. (1983) Helical disorder and the filament structure of F-actin are elucidated by the angle-layered aggregate.J. molec. Biol. 166, 605–22.Google Scholar
  8. EGELMAN, E. H. & PADRON, R. (1984) X-ray diffraction evidence that F-actin is a 100 Å filament.Nature 307, 56–8.Google Scholar
  9. ELZINGA, M. & PHELAN, J. (1984) F-actin is intermolecularly crosslinked by N-N'-p-phenylene dimaleimide through lysine-191 and cysteine-374.Proc. natn. Acad. Sci. U.S.A. 81, 6599–602.Google Scholar
  10. FOWLER, W. E. & AEBI, U. (1983) A consistent picture of the actin filament related to the orientation of the actin molecule.J. Cell Biol. 97, 264–9.Google Scholar
  11. FUJIME, S. (1970)J. phys. Soc. Jpn 29, 751.Google Scholar
  12. GREENE, L. (1982) The effect of nucleotide on the binding of myosin subfragment-1 to regulated actin.J. biol. Chem. 257, 13993–9.Google Scholar
  13. HANSON, J. (1967) Axial period of actin filaments: electron microscope studies.Nature 213, 353–6.Google Scholar
  14. HARLEY, R., JAMES, D., MILLER, A. & WHITE, J. W. (1977) Phonons and the elastic moduli of collagen and muscle.Nature 267, 285–7.Google Scholar
  15. HARTT, J. & MENDELSON, R. (1980) X-ray scattering of F-actin and myosin subfragment-I complex.Fed. Proc. 39, 1728.Google Scholar
  16. HASELGROVE, J. C. (1972) X-ray evidence for a conformational change in the actin-containing filaments of vertebrate striated muscle.Cold Spring Harb. Symp. quant. Biol. 37, 341.Google Scholar
  17. HUXLEY, H. E. (1972a) Structural changes in the actin- and myosin-containing filaments during contraction.Cold Spring Harb. Symp. quant. Biol. 37, 361.Google Scholar
  18. HUXLEY, H. E. (1972b) InThe Structure and Function of Muscle (edited by BOURNE, G. H.). New York, London: Academic Press.Google Scholar
  19. HUXLEY, H. E. & BROWN, W. (1967) The low-angle X-ray diagram of vertebrate striated muscle and its behaviour during contraction and rigor.J. molec. Biol. 30, 383–434.Google Scholar
  20. HUXLEY, H. E., KRESS, M., FARUQI, A. R., KOCH, M. H. J. & HENDRIX, J. (1984) Time-resolved X-ray diffraction studies of structural changes in muscle during activation and contraction.Programme of the 8th International Biophysics Congress, p. 103.Google Scholar
  21. HUXLEY, H. E., SIMMONS, R. M., FARUQI, A. R., KRESS, M., BORDAS, J. & KOCH, M. H. J. (1983) Changes in the X-ray reflections from contracting muscle during rapid mechanical transients and their structural implications.J. molec. Biol. 169, 469–506.Google Scholar
  22. HVIDT, S., FERRY, J. D., ROELKE, D. L. & GREASER, M. L. (1983) Flexibility of light meromyosin and other coiled-coil alpha-helical proteins.Macromolecules 16, 740–5.Google Scholar
  23. KNIGHT, P. & OFFER, G. (1978)p-NN'-phenylenebismaleimide, a specific cross-linking agent for F-actin.Biochem. J. 175, 1023–32.Google Scholar
  24. MENDELSON, R., GEBHARD, W., HOLMES, K., KABSCH, W., SUCK, D., COUCH, J., MORRIS, E. & O'BRIEN, E. (1984) Fitting the actin monomer into the actin helix: a combination of X-ray diffraction and electron microscope data.Biophys. J. 45, 391a.Google Scholar
  25. MIHASHI, K., YOSHIMURA, H., NISHIO, T., IKEGAMI, A. & KINOSITA, K. (1983) Internal motion of F-actin in 10−6-10−3 s time range studied by transient absorption anisotropy: detection of torsional motion.J. Biochem. 93, 1705–7.Google Scholar
  26. MIZUSHIMA-SUGANO, J., MAEDA, T. & MIKI-NOUMURA, T. (1983) Flexural rigidity of singlet microtubules estimated from statistical analysis of their contour lengths and end-to-end distances.Biochim. biophys. Acta 755, 257–62.Google Scholar
  27. MOORE, P. B., HUXLEY, H. E. & DEROSIER, D. J. (1970) Three-dimensional reconstruction of F-actin, thin filaments and decorated thin filaments.J. molec. Biol. 50, 279.Google Scholar
  28. NAGASHIMA, H. & ASAKURA, J. (1980) Dark-field light microscopic study of the flexibility of F-actin complexes.J. molec. Biol. 136, 169–82.Google Scholar
  29. O'BRIEN, E. J., COUCH, J., JOHNSON, G. R. P. & MORRIS, E. P. (1983) Structure of actin and the thin filament. InActin: Its Structure and Function in Muscle and non-Muscle Cells (edited by DOS REMEDIOS, C. and BARDEN, J.), pp. 3–16. New York, London: Academic Press.Google Scholar
  30. O'BRIEN, E. J., MORRIS, E. P., SEYMOUR, J. & COUCH, J. (1980) InMuscle Contraction: Its Regulatory Mechanisms (edited by EBASHI, S., MARUYAMA, K. and ENDO, M.), pp. 147–64. Tokyo: Japanese Scientific Societies Press. Berlin: Springer-Verlag.Google Scholar
  31. OOSAWA, F. (1980) The flexibility of F-actin.Biophys. Chem. 11, 443–6.Google Scholar
  32. PARRY, D. A. D. & SQUIRE, J. M. (1973) Structural role of tropomyosin in muscle regulation: analysis of the X-ray diffraction patterns from relaxed and contracting muscles.J. molec. Biol. 75, 33–5.Google Scholar
  33. ROSENFELD, S. S. & TAYLOR, E. W. (1985)J. biol. Chem. (in press).Google Scholar
  34. SAKABE, N., SAKABE, K., SASAKI, K., KONDO, H., EMA, T., KAMIYA, N. & MATSUSHIMA, M. (1983) Crystallographic studies of the chicken gizzard G-actin-DNAse I complex at 5 Å resolution.J. Biochem. 93, 299–302.Google Scholar
  35. SMITH, P. R., FOWLER, W. E. & AEBI, U. (1984) Towards an alignment of the actin molecule within the actin filament.Ultramicrosc. 13, 113–24.Google Scholar
  36. SMITH, P. R., FOWLER, W. E., POLLARD, T. D. & AEBI, U. (1983) Structure of the actin molecule determined from electron micrographs of crystalline actin sheets with a tentative alignment of the molecule in the actin filament.J. molec. Biol. 167, 641–60.Google Scholar
  37. SUCK, D., KABSCH, W. & MANNHERZ, H. G. (1981) Three-dimensional structure of the complex of skeletal muscle actin and bovine pancreatic DNase I at 6 Å resolution.Proc. natn. Acad. Sci. U.S.A. 78, 4319–23.Google Scholar
  38. TAJIMA, Y., KAMIYA, K. & SETO, T. (1983) X-ray structure analysis of thin filaments of a molluscan smooth muscle in the living relaxed state.Biophys. J. 43, 335–43.Google Scholar
  39. TAKEBAYASHI, T., MORITA, Y. & OOSAWA, F. (1977) Electron microscopic investigation of the flexibility of F-actin.Biochim. biophys. Acta 492, 357–63.Google Scholar
  40. TAYLOR, K. A. & AMOS, L. A. (1981) A new model for the geometry of the binding of myosin crossbridges to muscle thin filaments.J. molec. Biol. 147, 297–324.Google Scholar
  41. TAYLOR, K. A. & AMOS, L. A. (1983) Structure of actin in reconstructed images of S1 decorated filaments. InActin: Its Structure and Function in Muscle and non-Muscle Cells (edited by DOS REMEDIOS, C. and BARDEN, J.), pp. 25–6. New York, London: Academic Press.Google Scholar
  42. TAYLOR, K. A., REEDY, M. C., CORDOVA, L. & REEDY, M. K. (1984) Three-dimensional reconstruction of rigor insect flight muscle from tilted thin sections.Nature 310, 285–91.Google Scholar
  43. TRINICK, J., COOPER, J. & EGELMAN, E. H. (1985) Electron microscopy of frozen hydrated actin filaments. (in press).Google Scholar
  44. VIBERT, P. & CRAIG, R. (1982) Three-dimensional reconstruction of thin filaments decorated with a Ca2+ regulated myosin.J. molec. Biol. 157, 299–319.Google Scholar
  45. VIBERT, P. C., HASELGROVE, J C., LOWY, J. & POULSEN, F. R. (1972) Structural changes in the actin containing filaments of muscle.Nature 236, 182–3.Google Scholar
  46. WAKABAYASHI, T., HUXLEY, H. E., AMOS, L. A. & KLUG, A. (1975) Three-dimensional image reconstruction of actin-tropomyosin complex and actin-tropomyosin-troponin T-troponin I complex.J. molec. Biol. 93, 477–97.Google Scholar
  47. WAKABAYASHI, T. & TOYOSHIMA, C. (1981) Three-dimensional image analysis of the complex of thin filaments and myosin molecules from skeletal muscle. II. The multi-domain structure of actin-myosin S1 complex.J. Biochem. 90, 683–701.Google Scholar
  48. YANAGIDA, T. & OOSAWA, F. (1978) Polarized fluorescence from epsilon-ADP incorporated into F-actin in a myosin-free single fiber: conformation of F-actin and changes induced in it by heavy meromyosin.J. molec. Biol. 126, 507–24.Google Scholar
  49. YOSHIMURA, H., NISHIO, T., MIHASHI, K., KINOSITA, K. & IKEGAMI, A. (1984) Torsional motion of eosin-labelled T-actin as detected in the time resolved anisotropy decay of the probe in the submillisecond time range.J. molec. Biol. 179, 453–67.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1985

Authors and Affiliations

  • Edward H. Egelman
    • 1
  1. 1.MRC Laboratory of Molecular BiologyCambridgeUK

Personalised recommendations