Skip to main content
Log in

Regulation of vasopressin gene expression: Changes in the level, but not the size, of vasopressin mRNA following endocrine manipulations

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

  1. 1.

    Regulatory interactions between the hypothalamoneurohypophyseal vasopressin (VP) axis and the endocrine systems of the anterior pituitary have been investigated in the rat by observing changes in VP mRNA expression following endocrine manipulations.

  2. 2.

    An increase in the level, but not size, of VP mRNA was found in the supraoptic (SON) and paraventricular nuclei (PVN) of the hypothalamus and in the neurointermediate lobe (NIL) of the pituitary following hypothyroidism (induced by drinking 6-n-propyl-2-thiouracil; PTU) and adrenalectomy. Hypothyroidism induced by alternative procedures (surgical thyroidectomy or PTU injections) did not exert similar effects.

  3. 3.

    Treatment with the dopamine agonist bromocriptine to reduce prolactin secretion raised levels of VP mRNA in the NIL only. Castration did not up-regulate VP mRNA levels.

  4. 4.

    Since the observed effects on VP mRNA levels occur in the absence of changes in plasma osmolality, these results provide evidence of nonosmotic regulation of VP gene expression, an effect which is observed most clearly in the NIL pool of VP mRNA. Furthermore, the effects are distinct from changes in VP mRNA levels associated with raised plasma osmolality since the VP mRNA size was not increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aronsson, M., Fuxe, K., Dong, Y., Agnati, L. F., Okret, S., and Gustafsson, J.-A. (1988). Localization of glucocorticoid receptor mRNA in the male rat brain by in situ hybridization.Proc. Natl. Acad. Sci. USA 859331–9335.

    Google Scholar 

  • Bergland, R. M., and Page, R. B. (1979). Pituitary-brain vascular relations: A new paradigm.Science 20418–24.

    Google Scholar 

  • Boykin, J., DeTorrente, A., Erickson, A., Robertson, G., and Schrier, R. W. (1978). Role of plasma vasopressin in imparied water excretion of glucocorticoid deficiency.J. Clin. Invest. 62738–744.

    Google Scholar 

  • Bradley, D. J., Young, W. S., III, and Weinberger, C. (1989). Differential expression of and thyroid hormone receptor genes in rat brain and pituitary.Proc. Natl. Acad. Sci. USA 867250–7254.

    Google Scholar 

  • Carrazana, E. J., Pasieka, E. B., and Majzoub, J. A. (1988). The vasopressin mRNA poly(A) tail is unusually long and increases during stimulation of vasopressin gene expression in vivo.Mol. Cell. Biol 82267–2274.

    Google Scholar 

  • Carter, D. A., and Lightman, S. L. (1985). Neuroendocrine control of vasopressin secretion. InThe Posterior Pituitary (P. H. Baylis and P. L. Padfield, eds.), Marcel Dekker, New York, pp. 53–118.

    Google Scholar 

  • Carter, D. A., and Murphy, D. (1989). Independent regulation of neuropeptide mRNA level and poly(A) tail length.J. Biol. Chem. 2646601–6603.

    Google Scholar 

  • Carter, D. A., and Murphy, D. (1991). Rapid changes in poly(A) tail length of vasopressin and oxytocin mRNAs form a common early component of neurohypophyseal peptide gene activation following physiological stimulation.Neuroendocrinology 531–6.

    Google Scholar 

  • Davis, L. G., Arentzen, R., Reid, J. M., Manning, R. W., Wolfson, B., Lawrence, K. L., and Baldino, F., Jr. (1986). Glucocorticoid sensitivity of vasopressin mRNA levels in the paraventricular nucleus of the ratProc. Natl. Acad. Sci. USA 831145–1149.

    Google Scholar 

  • Gillies, G. E., Linton, E. A., and Lowry, P. J. (1982). Corticotrophin releasing activity of the new CRF is potentiated several times by vasopressin.Nature 299355–357.

    Google Scholar 

  • Holmes, M. C., Antoni, F. A., Aguilera, G., and Catt, K. J. (1986). Magnocellular axons in passage through the median eminence release vasopressin.Nature 319326–329.

    Google Scholar 

  • Kiss, J. Z., Mezey, E., and Skirboll, L. (1984). Corticotropin-releasing factor immunoreactive neurons of the paraventricular nucleus become vasopressin positive after adrenalectomy.Proc. Natl. Acad. Sci. USA 811854–1858.

    Google Scholar 

  • Kiss, J. Z., van Eekelen, J. A. M., Reul, J. M. H. M., Westphal, H. M., and De Kloet, E. R. (1988). Glucocorticoid receptor in magnocellular neurosecretory neurons.Endocrinology 122444–449.

    Google Scholar 

  • Labrie, F., Ferland, L., Denizeau, F., and Beaulieu, M. (1980). Sex steroids interact with dopamine at the hypothalamic and pituitary levels to modulate prolactin secretion.J. Steroid Biochem. 12323–330.

    Google Scholar 

  • Ladenson, P. W., Kieffer, J. D., Farwell, A. P., and Ridgway, E. C. (1986). Modulation of mycocardial L-triiodothyronine receptors in normal, hypothyroid and hyperthyroid rats.Metabolism 355–12.

    Google Scholar 

  • Levy, A., Lightman, S. L., Carter, D. A., and Murphy, D. (1990). The origin and regulation of posterior pituitary vasopressin in ribonucleic acid in osmotically stimulated rats.J. Neuroendocrinol. 2329–324.

    Google Scholar 

  • Linas, S. L., Berl, T., Robertson, G. L., Aisenbrey, G. A., Schrier, R. W., and Anderson, R. J. (1980). Role of vasopressin in the impaired water excretion of glucocorticoid deficiency.Kidney Int. 1858–67.

    Google Scholar 

  • Lumpkin, M. D., Samson, W. K., and McCann, S. M. (1987). Arginine vasopressin as a thyrotropin-releasing hormone.Science 2351070–1073.

    Google Scholar 

  • Mohr, E., Fehr, S., and Richter, D. (1991). Axonal transport of neuropeptide encoding mRNAs within the hypothalamo-neurohypophyseal tract of rats.EMBO J. 102419–2424.

    Google Scholar 

  • Murphy, D., and Carter, D. A. (1990). Vasopressin gene expression in the rodent hypothalamus: Transcriptional and post-transcriptional responses to physiological stimulation.Mol. Endocrinol. 41051–1059.

    Google Scholar 

  • Murphy, D., Levy, A., Lightman, S., and Carter, D. A. (1989). Vasopressin RNA in the neural lobe of the pituitary: Dramatic accumulation in response to salt loading.Proc. Natl. Acad. Sci. USA 869002–9005.

    Google Scholar 

  • Murphy, D., Pardy, K., Seah, V., and Carter, D. A. (1992). Post-transcriptional regulation of rat growth hormone gene expression: Increased message stability and nuclear polyadenylation accompany thyroid hormone depletion.Mol. Cell. Biol. 122624–2632.

    Google Scholar 

  • Nagy, G., Mulchahey, J. J., Smyth, D. G., and Neill, J. D. (1988). The glycopeptide moiety of vasopressin-neurophysin precursor is neurohypophysial prolactin releasing factor.Biochem. Biophys. Res. Comm. 151524–529.

    Google Scholar 

  • Ouafik, L., May, V., Saffen, D. W., and Eipper, B. A. (1990). Thyroid hormone regulation of peptidylglycineα-amidating monoxygenase expression in anterior pituitary gland.Mol. Endocrinol. 41497–1505.

    Google Scholar 

  • Palkovits, M. (1973). Isolated removal of hypothalamic or other brain nuclei of the rat.Brain Res. 59449–450.

    Google Scholar 

  • Richter, D. (1988). Molecular events in expression of vasopressin and oxytocin and their cognate receptors.Am. J. Physiol. 255F207-F219.

    Google Scholar 

  • Robinson, I. C. A. F. (1986). The magnocellular and parvocellular OT and AVP systems. InNeuroendocrinology (S. L. Lightman and B. J. Everitt, eds.) Blackwell Scientific, Oxford, pp. 154–176.

    Google Scholar 

  • Schilling, K., Schmale, H., Oeding, P., and Pilgrim, C. (1991). Regulation of vasopressin expression in cultured diencephalic neurons by glucocorticoids.Neuroendocrinology 53528–535.

    Google Scholar 

  • Schrier, R. W., Berl, T., and Anderson, R. J. (1979). Osmotic and non-osmotic control of vasopressin release.Am. J. Physiol. 236F321-F332.

    Google Scholar 

  • Seif, S. M., Robinson, A. G., Zimmerman, E. A., and Wilkins, J. (1978). Plasma neurophysin and vasopressin in the rat: Response to adrenalectomy and steroid replacement.Endocrinology 1031009–1015.

    Google Scholar 

  • Seif, S. M., Robinson, A. G., Zenser, T. W., Davis, B. B., Huellmantel, A. B., and Haluszczak, C. (1979). Neurohypophyseal peptides in hypothyroid rats: Plasma levels and kidney response.Metabolism 28137–143.

    Google Scholar 

  • Skowsky, W. R., and Gisher, D. A. (1977). Arginine vasopressin secretion in thyroidectomized sheep.Endocrinology 1001022–1026.

    Google Scholar 

  • Suemaru, S., Hashimoto, K., Ogasa, T., Takao, T., Ota, Z., Hirakawa, M., and Kawata, M. (1990). Effects of hyperosmotic stimulation and adrenalectomy on vasopressin mRNA levels in the paraventricular and supraoptic nuclei of the hypothalamus: In situ hybridization histochemical analysis using a synthetic oligonucleotide probe.Acta Med. Okayama 5233–241.

    Google Scholar 

  • Zimmerman, E. A., and Silverman, A. J. (1983). Vasopressin and adrenal cortical interactions. InThe Neurohypophysis: Structure, Function and Control, Progress in Brain Research, Vol. 60 (B. A. Cross and G. Leng, Eds.), Elsevier, Amsterdam, pp. 493–504.

    Google Scholar 

  • Zingg, H. H., Lefebvre, D. L., and Almazan, G. (1988). Regulation of poly(A) tail size of vasopressin mRNA.J. Biol. Chem. 26311041–11043.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carter, D.A., Pardy, K. & Murphy, D. Regulation of vasopressin gene expression: Changes in the level, but not the size, of vasopressin mRNA following endocrine manipulations. Cell Mol Neurobiol 13, 87–95 (1993). https://doi.org/10.1007/BF00712991

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00712991

Key words

Navigation