Skip to main content
Log in

Substrates for adenosine 3′,5′-monophosphate (cAMP)-dependent protein kinase in the rat pituitary gland

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

  1. 1.

    Substrates for cAMP-dependent protein kinase were investigated in anterior, intermediate, and neural lobes of the rat pituitary gland. In a cell-free assay system, cAMP increased phosphorylation of 17 K, 33 K, and 60 K macromolecules of the anterior lobe, 17 K, 33 K, 60 K, and 80 K macromolecules of the intermediate lobe, and 60 K, 80 K, and 85 K macromolecules of the neural lobe.

  2. 2.

    Other nucleotides were tested in the intermediate lobe; 8 Br-cAMP mimicked cAMP, cGMP was much less effective than cAMP or 8 Br-cAMP, and 5′-AMP showed no significant effect. The purified catalytic subunit of cAMP-dependent protein kinase evoked the same phosphorylation pattern as the endogenous kinase.

  3. 3.

    Maximum cAMP-dependent phosphorylation occurred at between 1 and 2 min of incubation; after 20 min, phosphorylation was reduced by 80%. This suggests the presence of phosphatase activity in the intermediate lobe.

  4. 4.

    When tested upon dispersed intermediate lobe cells permeabilized by high-voltage electrical discharges, cAMP increased phosphorylation of the 17 K and 33 K macromolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cohen, P. (1982). The role of protein phosphorylation in neural and hormonal control of cellular activity.Nature 296613–620.

    Article  PubMed  CAS  Google Scholar 

  • Cote, T. E., Frey, E. A., and Sekura, R. D. (1984). Altered activity of the inhibitory guanyl nucleotide-binding component (Ni) induced by pertussis toxin.J. Biol. Chem. 2598693–8698.

    PubMed  CAS  Google Scholar 

  • Cote, T., Munemura, M., Eskay, R. L., and Kebabian, J. W. (1980). Biochemical identification of theβ-adrenoceptor and evidence for the involvement of an adenosine 3′,5′-monophosphate system in theβ-adrenergically induced release ofα-melanocyte-stimulating hormone in the intermediate lobe of the rat pituitary gland.Endocrinology 107108–116.

    Article  PubMed  CAS  Google Scholar 

  • Cote, T. E., Frey, E. A., Sekura, R. D., and Kebabian, J. W. (1985). Dual regulation of adenylate cyclase activity and hormone release in the intermediate lobe of the rat pituitary gland: Evidence for the involvement of membrane components of the stimulatoryβ 2-adrenergic system and of the inhibitory D-2 dopaminergic system.Adv. Cyclic Nucleotide Protein Phosphorylat. Res. 19151–167.

    CAS  Google Scholar 

  • Cote, T. E., Felder, R., Kebabian, J. W., Sekura, R. D., Reisine, T., and Affolter, H. U. (1986). D-2 dopamine receptor mediated inhibition of proopiomelanocortin synthesis in rat intermediate lobe.J. Biol. Chem. 2614555–4561.

    PubMed  CAS  Google Scholar 

  • Denef, C., and Baes, M. (1982).β-Adrenergic stimulation of prolactin release from superfused pituitary cell aggregates.Endocrinology 111356–358.

    Article  PubMed  CAS  Google Scholar 

  • Dupony, J.-P. (1980). Differentiation of MSH-, ACTH-, endorphin-, and LPH-containing cells in the hypophysis during embryonic and fetal development.Int. Rev. Cytol. 68197–249.

    Article  Google Scholar 

  • Exton, J. H. (1982). Regulation of carbohydrate metabolism by cyclic nucleotides. InHandbook of Experimental Pharmacology (J. W. Kebabian and J. A. Nathanson, Eds.), Springer-Verlag, Berlin, Vol. 58, pp. 1–87.

    Google Scholar 

  • Freedman, S. D., and Jamison, J. D. (1982). Hormone-induced protein phosphorylation III.J. Cell Biol. 95918–923.

    Article  PubMed  CAS  Google Scholar 

  • Frey, E. A., Kebabian, J. W., and Guild, S. (1986). Forskolin enhances calcium-evoked prolactin release from 7315c tumor cells without increasing the cytosolic calcium concentration.Mol. Pharmacol. 29461–466.

    PubMed  CAS  Google Scholar 

  • Furuki, Y. (1983). Mechanism ofβ-endorphin release regulation: Evaluation using dispersed cells of the pituitary intermediate lobe.Nippon Sanka Fujinka Gakkai Zasshi 351604–1610.

    PubMed  CAS  Google Scholar 

  • Furuki, Y., Sakoda, Y., Hatada, Y., Munemura, M., Maeyama, M., and Matsumura, M. (1984). The effects of cholera toxin in the release ofβ-endorphin from the dispersed cells of the rat neurointermediate lobe.Nippon Naibunpi Gakkai Zasshi 60995–1004.

    PubMed  CAS  Google Scholar 

  • Furuki, Y., Munemura, M., Sakoda, Y., Hatada, Y., Maeyama, M., and Matsumura, M., (1985). The effects of dopamine on the release of immunoreactiveβ-endorphin-like peptide from the dispersed cells of the rat neurointermediate lobe.Nippon Naibunpi Gakkai Zasshi 61744–752.

    PubMed  CAS  Google Scholar 

  • Goldman, M. E., Beaulieu, M., Kebabian, J. W., and Eskay, R. L. (1983).α-Melanocyte-stimulating hormone-like peptides in the intermediate lobe of the rat pituitary gland: Characterization of content and release in vitro.Endocrinology 112435–441.

    Article  PubMed  CAS  Google Scholar 

  • Guild, S., Itoh, Y., Kebabian, J. W., Luini, A., and Reisine, T. (1986). Forskolin enhances basal and potassium evoked hormone release from normal and malignant pituitary tissue: The role of calcium.Endocrinology 118268–279.

    Article  PubMed  CAS  Google Scholar 

  • Hemmings, H. C., Greengard, P., Tung, H. Y., and Cohen, P. (1984). DARPP-32 a dopamineregulated neuronal phosphoprotein, is a potent inhibitor of protein phosphatase-1.Nature 310503–505.

    Article  PubMed  CAS  Google Scholar 

  • Knight, D. E., and Baker, P. F. (1982). Calcium-dependence of catecholamine release from bovine medullary cells after exposure to intense electric fields.J. Membrane Biol. 68107–104.

    Article  CAS  Google Scholar 

  • Kuo, J. F., and Greengard, P. (1969). Cyclic nucleotide-dependent protein kinase. Widespread occurrence of adenosine 3′,5′-monophosphate-dependent protein kinase in various tissues and phyla of the animal kingdom.Proc. Natl. Acad. Sci. USA 641349–1355.

    Article  PubMed  CAS  Google Scholar 

  • Laemmli, U. K., and Favre, M. (1973). Maturation of the head of bacteriophage T-4. 1. DNA packing events.J. Mol. Biol. 80575–599.

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki, K., Goldman, M. E., and Kebabian, J. W. (1984a). Forskolin stimulates adenylate cyclase activity, adenosine 3′ 5′-monophosphate production and peptide release from the intermediate lobe of the rat pituitary gland.Endocrinology 114761–766.

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki, K., Reisine, T., and Kebabian, J. W. (1984b). Adenosine 3′,5′-monophosphate (cAMP)-dependent protein kinase activity in rodent pituitary tissue: Possible role in cAMP-dependent hormone secretion.Endocrinology 1151933–1945.

    Article  PubMed  CAS  Google Scholar 

  • Munemura, M., Eskay, R. L., and Kebabian, J. W., (1980). Release ofα-melanocyte-stimulating hormone from dispersed cells of the intermediate lobe of the rat pituitary gland: Involvement of catecholamines and adenosine 3′,5′-monophosphate.Endocrinology 1061795–1803.

    Article  PubMed  CAS  Google Scholar 

  • Munier, H., and Labrie, F. (1982). Specificity ofβ 2-adrenergic receptor stimulating cAMP accumulation in the intermediate lobe of the rat pituitary gland.Eur. J. Pharmacol. 81411–420.

    Article  Google Scholar 

  • Nimmo, H., and Cohen, P. (1977). Hormonal control of protein phosphorylation. InAdvances in Cyclic Nucleotide Research (P. Greengard and G. A. Robinson, Eds.), Raven Press, New York, Vol. 5, pp. 145–266.

    Google Scholar 

  • Perkins, S. N., Evans, W. S., Thorner, M. O., Gibbs, D. M., and Cronin, M. T. (1985).β-Adrenergic binding and secretory responses of the anterior pituitary.Endocrinology 1171818–1825.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, G. A., Butcher, R. W., and Sutherland, E. W. (1971).cAMP, Academic Press, New York.

    Google Scholar 

  • Sakoda, Y., Munemura, M., Furuki, Y., Hatada, Y., Maeyama, M., and Matsumura, M. (1985). Involvement of calcium in the release of immunoactiveβ-endorphin-like peptide from dispersed cells of the neurointermediate lobe of the rat pituitary gland.Jpn. J. Pharmacol. 37259–267.

    Article  PubMed  CAS  Google Scholar 

  • Ueda, T., and Greengard, P. (1977). Adenosine 3′,5′-monophosphate-regulated phosphoprotein system of neural membranes. I. Solubilization, purification and some properties of an endogenous phosphoprotein.J. Biol. Chem. 2525155–5163.

    PubMed  CAS  Google Scholar 

  • Walaas, S. I., Nairn, A. C., and Greengard, P. (1983). Regional distribution of calcium- and cyclic adenosine 3′,5′-monophosphate-regulated protein phosphorylation systems in mammalian brain.J. Neurosci. 3292–301.

    Google Scholar 

  • Walsh, D. A., Perkins, J. P., and Krebs, E. G. (1968). An adenosine 3′,5′-monophosphatedependent protein kinase from rabbit skeletal muscle.J. Biol. Chem. 2433763–3765.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furuki, Y., Yamamoto, T., Guild, S. et al. Substrates for adenosine 3′,5′-monophosphate (cAMP)-dependent protein kinase in the rat pituitary gland. Cell Mol Neurobiol 8, 71–83 (1988). https://doi.org/10.1007/BF00712913

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00712913

Key words

Navigation