Skip to main content
Log in

Molecular mechanisms of exocytosis: The adrenal chromaffin cell as a model system

  • Review
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

  1. 1.

    The release of neurotransmitters, hormones, and enzymes involves exquisitely regulated events which ultimately result in the fusion of the secretory vesicle with the cell's plasma membrane, releasing the vesicle contents into the extracellular space.

  2. 2.

    The biochemical and cellular mechanisms mediating exocytosis have been extensively studied in a model system of primary cultured adrenal chromaffin cells.

  3. 3.

    This paper briefly reviews current understanding, and directions of future studies in exocytosis using this model system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amy, C. M., and Krishner, N. (1981). Phosphorylation of adrenal medulla cell proteins in conjunction with stimulation of catecholamine secretion.J. Neurochem. 36847–854.

    Article  PubMed  CAS  Google Scholar 

  • Baker, P. F., and Knight, D. E. (1984). Calcium control of exocytosis in bovine adrenal medullary cells.TINS April:120–126.

  • Boulter, J.,et al. (1986). Isolation of a cDNA clone coding for a possible neural nicotinic acetylcholine receptorα-subunit.Nature 319368–374.

    Article  PubMed  CAS  Google Scholar 

  • Burgoyne, R. D. (1984). Mechanisms of secretion from adrenal chromaffin cells.Biochim. Biophys. Acta 779201–216.

    PubMed  CAS  Google Scholar 

  • Burgoyne, R. D. (1987). Control of exocytosis.Nature 328112–113.

    Article  PubMed  CAS  Google Scholar 

  • Cena, V., Nicolas, G. P., Sanchez-Garcia, P., Kirpekar, S. M., and Garcia, A. G. (1983). Pharmacological dissection of receptor-associated and voltage-sensitive ionic channels involved in catecholamine release.Neuroscience 101455–1462.

    Article  PubMed  CAS  Google Scholar 

  • Cheek, T. R., and Burgoyne, R. D. (1986). Nicotine-evoked disassembly of cortical actin filaments in adrenal chromaffin cells.FEBS 207110–114.

    Article  CAS  Google Scholar 

  • Cobbold, P. H., Cheek, T. R., Cuthbertson, K. S. R., and Burgoyne, R. D. (1987). Calcium transient in single adrenal chromaffin cells detected with aequorin.FEBS 21144–48.

    Article  CAS  Google Scholar 

  • Creutz, C.,et al. (1987). The roles of Ca2+-dependent membrane-binding proteins in the regulation and mechanism of exocytosis. InCell Fusion (A. E. Sowers, Ed.), Plenum Press, New York, pp. 45–68.

    Google Scholar 

  • Dunn, L. A., and Holz, R. W. (1983). Catecholamine secretion from digitonin-treated adrenal medullary chromaffin cells.J. Biol. Chem. 2854989–4993.

    Google Scholar 

  • Fowler, V. M., and Pollard, H. (1982). Chromaffin granule membrane-F-actin interaction are calcium sensitive.Nature 295336–339.

    Article  PubMed  CAS  Google Scholar 

  • Garcia, A. G.,et al. (1984). Dihydropyridine BAY-K-8644 activated chromaffin cell calcium channels.Nature 30969–71.

    Article  PubMed  CAS  Google Scholar 

  • Geisow, M. J., Burgoyne, R. D., and Harris, A. (1982). Interaction of calmodulin with adrenal chromaffin granule membranes.FEBS Lett. 14369–72.

    Article  PubMed  CAS  Google Scholar 

  • Hille, B. (1984).Ionic Channels of Excitable Membranes, Sinnauer, Sunderland, Mass., pp. 205–225.

    Google Scholar 

  • Holz, R. W., Senter, R. A., and Frye, R. A. (1982). Relationship between Ca2+ uptake and catecholamine secretion in primary dissociated cultures of adrenal medulla.J. Neurochem. 39635–645.

    Article  PubMed  CAS  Google Scholar 

  • Kenigsberg, R. L., Cote, A., and Trifaro, J. M. (1982). Trifluoperazine, a calmodulin inhibitor, blocks secretion in cultured chromaffin cells at a step distal from calcium entry.Neuroscience 72277–2286.

    Article  PubMed  CAS  Google Scholar 

  • Kerlavage, A. R.,et al. (1986). Molecular structure and evolution of adrenergic and cholinergic receptors.Proteins 1287–301.

    Article  PubMed  CAS  Google Scholar 

  • Kikkawa, U., and Nishizuka, Y. (1986). The role of protein kinase C in transmembrane signalling.Annu. Rev. Cell Biol. 2149–179.

    Article  PubMed  CAS  Google Scholar 

  • Knight, D. E., and Baker, P. F. (1982). Calcium-dependence of catecholamine release from bovine adrenal medullary cells after exposure to intense electric fields.J. Membrane Biol. 68107–140.

    Article  CAS  Google Scholar 

  • Knight, D. E., and Baker, P. F. (1983). The phoral ester TPA increase the affinity of exocytosis for calcium in “leaky” adrenal medullary cells.FEBS 16098–100.

    Article  CAS  Google Scholar 

  • Knight, D. E., and Kesteven, N. T. (1983). Evoked transient intracellular free Ca2+ changes and secretion in isolated bovine adrenal medullary cells.Proc. R. Soc. Lond. B 218177–199.

    Article  PubMed  CAS  Google Scholar 

  • Knight, D. E., Tonge, D. A., and Baker, P. F. (1985). Inhibition of exocytosis in bovine adrenal medullary cells by botulinum toxin type D.Nature 317719–721.

    Article  PubMed  CAS  Google Scholar 

  • Kondo, H., Wolosewick, J. J., and Pappas, G. D. (1982). The microtrabecular lattice of the adrenal medulla revealed by polyethylene glycol embedding and stereo electron microscopy.J. Neurosci. 257–65.

    PubMed  CAS  Google Scholar 

  • Mundy, D. I., and Strittmatter, W. J. (1985). Requirement for metalloendoprotease in exocytosis: Evidence in mast cells and adrenal chromaffin cells.Cell 40645–656.

    Article  PubMed  CAS  Google Scholar 

  • Penner, R., Neher, E., and Dreyer, F. (1986). Intracellularly injected tetanus toxin inhibits exocytosis in bovine adrenal chromaffin cells.Nature 32476–78.

    Article  PubMed  CAS  Google Scholar 

  • Perrin, D., and Aunis, D. (1985). Reorganization ofα-fodrin induced by stimulation in secretory cells.Nature 315589–592.

    Article  PubMed  CAS  Google Scholar 

  • Perrin, D., Langley, O. K., and Aunis, D. (1987). Anti-α-fodrin inhibits secretion from permeabilized chromaffin cells.Nature 326498–501.

    Article  PubMed  CAS  Google Scholar 

  • Pocotte, S. L.,et al. (1985). Effects of phorbol ester on catecholamine secretion and protein phosphorylation in adrenal medullary cell cultures.Proc. Natl. Acad. Sci. 82930–934.

    Article  PubMed  CAS  Google Scholar 

  • Swilem, A.-M., Hawthorne, J. N., and Azila, N. (1983). Catecholamine secretion by perfused bovine adrenal medulla in response to nicotinic activation is inhibited by muscarinic receptors.Biochem. Pharmacol. 323873–3874.

    Article  PubMed  CAS  Google Scholar 

  • Strittmatter, W. J., Couch, C. B., and Mundy, D. I. (1985). Role of proteins in the fusion of biological membranes. InMembrane Fluidity in Biology, Vol IV (R. C. Aloia and J. Boggs, Eds.), Academic Press, New York, pp. 259–291.

    Google Scholar 

  • Waymire, J. C.,et al. (1983). Bovine adrenal chromaffin cells: High yield purification and viability in suspension culture.J. Neurosci. Methods 7329–351.

    Article  PubMed  CAS  Google Scholar 

  • Whitaker, M. (1985). Polyphosphoinositide hydrolysis is associated with exocytosis in adrenal medullary cells.FBS 189137–140.

    Article  CAS  Google Scholar 

  • Wilson, S. P., and Kirshner, N. (1983). Calcium-evoked secretion from digitonin-permeabilized adrenal medullary chromaffin cells.J. Biol. Chem. 2584994–5000.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strittmatter, W.J. Molecular mechanisms of exocytosis: The adrenal chromaffin cell as a model system. Cell Mol Neurobiol 8, 19–25 (1988). https://doi.org/10.1007/BF00712907

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00712907

Key words

Navigation