Solar Physics

, Volume 150, Issue 1–2, pp 99–115 | Cite as

WKB estimates for the onset of ideal MHD instabilities in solar coronal loops

  • A. W. Hood
  • P. De Bruyne
  • R. A. M. Van Der Linden
  • M. Goossens


A WKB approach, based on the method of Connor, Hastie, and Taylor (1979), is used to obtain simple estimates of the critical conditions for the onset of ideal MHD instabilities in line-tied solar coronal loops. The method is illustrated for the constant twist, Gold-Hoyle (1960) field, and the critical conditions are compared with previous and new numerical results. For the force-free case, the WKB estimate for the critical loop length reduces to \(2\pi m + \sqrt 2 \pi\). For the sufficiently non-force-free case the critical length can be expressed in the forml 0 +l 1/m. The results confirm the findings of De Bruyne and Hood (1992) that for force-free fields them = 1 mode is the first mode to become unstable but for the sufficiently strong non-force-free case this reverses with them → ∞ mode being excited first.


Solar Phys Critical Length Azimuthal Mode Radial Derivative Azimuthal Wave Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bender, C. M. and Orszag, S. A.: 1978,Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill, New York.MATHGoogle Scholar
  2. Birn, J. and Schindler, K.: 1981, in E. R. Priest (ed.),Solar Flare Magnetohydrodynamics, Gordon and Breach Science Publishers, New York.Google Scholar
  3. Connor, J. W., Hastie, P., and Taylor, R.: 1979,Proc. Roy. Soc. London A365, 1.MathSciNetADSGoogle Scholar
  4. De Bruyne, P. and Hood, A. W.: 1989a,Solar Phys. 119, 87.CrossRefADSGoogle Scholar
  5. De Bruyne, P. and Hood, A. W.: 1989b,Solar Phys. 123, 241.CrossRefADSGoogle Scholar
  6. De Bruyne, P. and Hood, A. W.: 1992,Solar Phys. 142, 87.CrossRefADSGoogle Scholar
  7. Dewar, R. L. and Glasser, A. H.: 1983,Phys. Fluids 26, 3038.MATHCrossRefADSGoogle Scholar
  8. Einaudi, G. and Van Hoven, G.: 1983,Solar Phys. 88, 163.CrossRefADSGoogle Scholar
  9. Foote, B. and Craig, I. J. D.: 1990,Astrophys. J. 350, 437.CrossRefADSGoogle Scholar
  10. Goedbloed, J.: 1983,Lecture Notes on Ideal MHD, Rijnhuizen Report 83–145Google Scholar
  11. Gold, T. and Hoyle, F.: 1960,Monthly Notices Roy. Astron. Soc. 120, 89.ADSGoogle Scholar
  12. Hameiri, E., Laurence, P., and Mond, M.: 1991,J. Geophys. Res. 96, 1513.ADSCrossRefGoogle Scholar
  13. Hood, A. W.: 1992,Plasma Physics and Controlled Fusion 34, 441.CrossRefADSGoogle Scholar
  14. Hood, A. W. and Priest, E. R.: 1981,Geophys. Astrophys. Fluid Dynamics 17, 297.MATHADSGoogle Scholar
  15. Newcomb, W.: 1960,Ann. Phys. 10, 232.MATHCrossRefADSGoogle Scholar
  16. Van der Linden, R. A. M. and Hood, A. W.: 1994, in preparation.Google Scholar
  17. Van der Linden, R. A. M., Goossens, M., and Kerner, W.: 1990,Comp. Phys. Comm. 59, 61.MATHCrossRefADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • A. W. Hood
    • 1
  • P. De Bruyne
    • 2
  • R. A. M. Van Der Linden
    • 3
  • M. Goossens
    • 4
  1. 1.Department of Mathematical and Computational SciencesUniversity of St. AndrewsUK
  2. 2.LABORELECLinkebeekBelgium
  3. 3.Department of Mathematical and Computational SciencesUniversity of St. AndrewsUK
  4. 4.Centrum voor Plasma AstrofysicaLeuvenBelgium

Personalised recommendations