Skip to main content
Log in

Structural and functional investigations of cholinesterases by means of affinity electrophoresis

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

  1. 1.

    After a brief survey of the basic affinity electrophoresis concepts, the usual ways for preparing affinity electrophoresis ligands are examined.

  2. 2.

    Then results obtained on cholinesterases are reviewed. This section includes (a) structural and functional investigations on anionic sites, i.e., study of ligand-induced conformational change, organophosphate-induced “aging,” genetic variants, and active-site topology; and (b) characterization of cholinesterase conjugates (hybrid proteins) and glycoinositol phospholipid-anchored cholinesterases.

  3. 3.

    The future prospects of affinity electrophoresis, e.g., investigations on the esteratic site and exploration of the carbohydrate moiety, are emphasized in the concluding section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amitai, G., Ashani, Y., Shahar, A., Gafni, A., and Silman, I. (1982). Novel pyrene-containing organophosphates as fluorescent probes for studying aging-induced conformational changes in organophosphate-inhibited acetylcholinesterase.Biochemistry 212060–2069.

    Google Scholar 

  • Arpagaus, M., Kott, M., Vatsis, K. P., Bartels, C. F., La Du, B. N., and Lockridge, O. (1990). Structure of the gene of human butyrylcholinesterase. Evidence for a single copy.Biochemistry 29124–131.

    Google Scholar 

  • Balny, C., and Masson, P. (1988). Les hautes pressions: outils d'investigation biochimique.Innov. Tech. Biol. Med. 9294–320.

    Google Scholar 

  • Balny, C., Masson, P., and Travers, F. (1989). Some recent aspects of the use of high-pressure for protein investigations in solution.High Press. Res. 21–28.

    Google Scholar 

  • Belzunces, L. P., Toutant, J. P., and Bounias, M. (1988). Acetylocholinesterase fromApis mellifera head.Biochem. J. 255463–470.

    Google Scholar 

  • Bøg-Hansen, T. C., Teisner, B., and Hau, J. (1983). Affinity electrophoresis with special reference to the microheterogeneity of glycoproteins and identification of ligand binding proteins. InModern Methods in Protein Chemistry, Vol. I (H. Tschesche, Ed.), Walter de Gruyter, Berlin, pp. 125–148.

    Google Scholar 

  • Boschetti, E. (1989). Polyacrylamide derivatives to the service of biospecific separations.J. Biochem. Biophys. Meth. 1921–36.

    Google Scholar 

  • Eiberg, H., Nielsen, L. S., Klausen, J., Dahlén, M., Kristensen, M., Bisgaard, M. L., Moller, N., and Mohr, J. (1989). Linkage between serum ChE 2 andγ-crystalline gene cluster (CRYG): Assignment to chromosome 2.Clin. Genet. 35313–321.

    Google Scholar 

  • Ewald, A. H. (1968). Effect of pressure on charge transfer complexes in solution.Trans. Faraday. Soc. 64733–743.

    Google Scholar 

  • Garner, C. W., Little, G. H., and Pelley, J. W. (1984). Serum cholinesterase inhibition by boronic acids.Biochim. Biophys. Acta 79091–93.

    Google Scholar 

  • Heremans, K. (1982). High-pressure effects on proteins and other biomolecules.Annu. Rev. Biophys. Bioeng. 111–21.

    Google Scholar 

  • Hořejši, V. (1979). Some theoretical aspects of affinity electrophoresis.J. Chromatogr. 1781–13.

    Google Scholar 

  • Hořejši, V., and Tichá, M. (1981). Theory of affinity electrophoresis. Evaluation of the effects of protein multivalency, immobilized ligand heterogeneity and microdistribution and determination of effective concentration of immobilized ligand.J. Chromatogr. 21643–62.

    Google Scholar 

  • Hořejši, V., and Tichá, M. (1986). Qualitative and quantitative applications of affinity electrophoresis for the study of protein-ligand interaction: A review.J. Chromatogr. 37649–67.

    Google Scholar 

  • Igloi, G. L., and Kössel, H. (1985). Affinity electrophoresis for monitoring terminal phosphorylation and the presence of queuosine in RNA. Application of polyacrylamide containing a covalently bound boronic acid.Nucl. Acid Res. 136881–6898.

    Google Scholar 

  • Juul, P. (1968). Human plasma cholinesterase isoenzymes.Clin. Chim. Acta 19205–213.

    Google Scholar 

  • Kabachnik, M. I., Brestkin, A. P., Godovikov, N. N., Michelson, M. J., Rozengart, E. V., and Rozengart, V. I. (1970). Hydrophobic areas on the active surface of cholinesterases.Pharmacol. Res. 22355–388.

    Google Scholar 

  • Kalow, W., and Davies, R. O. (1958). The reactivity of various esterase inhibitors towards atypical human serum cholinesterase.Biochem. Pharmacol. 1183–192.

    Google Scholar 

  • Karnovsky, M. J., and Roots, L. (1964). A “direct-coloring” thiocholine method for cholinesterases.J. Histochem. Cytochem. 12219–221.

    Google Scholar 

  • La Du, B. N., and Choi, Y. C. (1975). Separation of atypical and usual forms of human serum cholinesterase by affinity chromatography. InIsozymes, 3rd Int. Conf. Isozymes, Vol. 2 (C. L. Markert, Ed.), Academic Press, New York, pp. 877–886.

    Google Scholar 

  • La Du, B. N. (1989). Identification of the human serum cholinesterase variants using the polymerase chain reaction amplification technique.TiPS 10309–313.

    Google Scholar 

  • La Du, B. N., Bartels, C., Nogueira, C. P., Arpagaus, M., and Lockridge, O. (1991). Proposed nomenclature for human butyrylcholinesterase genetic variants identified by DNA sequencing.Cell. Mol. Neurobiol. 1179–89.

    Google Scholar 

  • Lovrien, E. W., Magenis, R. E., Rivas, M. L., Lamvik, N., Rowe, S., Wood, J., and Hemmerling, J. (1978). Serum cholinesterase (E2) linkage analysis possible evidence for localization on chromosome 16.Cytogenet. Cell Genet. 22324–326.

    Google Scholar 

  • Masson, P. (1985). L'électrophorèse d'affinité des proteines actives. InElectrophorèse et Taxonomie (M. Goyffon, and J. L. D'Hondt, Eds.), Soc. Zool. France, Paris, pp. 73–104.

    Google Scholar 

  • Masson, P. (1989). A naturally-occurring molecular form of human plasma cholinesterase is an albumin conjugate.Biochim. Biophys. Acta 988258–266.

    Google Scholar 

  • Masson, P., and Balny, C. (1986). Thermodynamic arguments for temperature induced cryptic conformational change of human plasma cholinesteraseBiochim.Biophys. Acta 874 90–98.

    Google Scholar 

  • Masson, P., and Goasdoué, J. L. (1986). Evidence that the conformational stability of “aged” organophosphate-inhibited cholinesterase is altered.Biochim. Biophys. Acta 869304–313.

    Google Scholar 

  • Masson, P., and Marnot, B. (1985). Electrophorèse d'affinité en gel de polyacrylamide. Influence de la concentration du gel sur l'affinité apparente de la cholinestérase pour un ligand de son site anionique.J. Chromatogr. 328135–144.

    Google Scholar 

  • Masson, P., and Reybaud, J. (1988). Hydrophobic interaction electrophoresis under high hydrostatic pressure: Study of the effects of pressure upon the interaction of serum albumin with a long-chain aliphatic ligand.Electrophoresis 9157–161.

    Google Scholar 

  • Masson, P., and Vallin, P. (1983). Possibilités d'étude des variantes de la cholinestérase plasmatique humaine par électrophorèse d'affinité.J. Chromatogr. Biomed. Appl. 273289–299.

    Google Scholar 

  • Masson, P., Sussmilch, A., and Charlet, J. P. (1980). Purification de la butyrylcholinestérase du plasma humain.C.R. Acad. Sci. Paris Ser. D 289537–539.

    Google Scholar 

  • Masson, P., Privat de Garilhe, A., and Burnat, P. (1982). Formes moleculaires multiples de la butyrylcholinestérase du plasma human. II. Electrophrèse d'affinité des formes C1, C3 et C4.Biochim. Biophys. Acta 701269–284.

    Google Scholar 

  • Masson, P., Marnot, B., Lombart, J. Y., and Morelis, P. (1984). Etude électrophorétique de la butyrylcholinestérase agée après inhibition par le soman.Biochimie 66235–249.

    Google Scholar 

  • Masson, P., Chatonnet, A., and Lockridge, O. (1990a). Evidence for a single butyrylcholinesterase gene in individuals carrying the C5 plasma cholinesterase variant (CHE 2).FEBS Lett. 262115–118.

    Google Scholar 

  • Masson, P., Froment, M. T., Audras, J. C., and Renault, F. (1990b). Molecular characterization of the C5 human plasma cholinesterase variant.Am. Chem. Soc. Symp. Ser. (in press).

  • Matoušek, V., and Hořejši, V. (1982). Affinity electrophoresis: A theoretical study of the effects of the kinetics of protein-ligand complex formation and dissociation reactions.J. Chromatogr. 254271–290.

    Google Scholar 

  • Mazza, J. A., Outumuro, P., Moroux, Y., and Boschetti, E. (1989). Polymer design in dye chromatography. InProtein-Dye Interactions (M. A. Vijayalakshmi, and O. Bertrand, Eds.), Elsevier, New York, pp. 126–136.

    Google Scholar 

  • McGuire, M., Noguera, C., Bartels, C. F., Lightstone, H., Hajra, A., Van des Spek, A. F. L., Lockridge, O., and La Du, B. N. (1989). Identification of the structural mutation responsible for the dibucaine-resistant (atypical) variant form of human serum cholinesterase.Proc. Natl. Acad. Sci. USA 86953–957.

    Google Scholar 

  • Morild, E. (1981). The theory of pressure effects on enzyme.Adv. Prot. Chem. 3493–166.

    Google Scholar 

  • Rosenberry, T. L. (1975). Acetylcholinesterase.Adv. Enzymol. 43103–218.

    Google Scholar 

  • Rosenberry, T. L., Toutant, J. P., Haas, R., and Roberts, W. L. (1989). Identification of glycoinositol phospholipid anchors of membrane proteins.Meth. Cell. Biol. 32231–255.

    Google Scholar 

  • Shinitzky, M., Dudai, Y., and Silman, I. (1973). Spectral evidence for the presence of tryptophan in the binding site of acetylcholinesterase.FEBS Lett. 30125–128.

    Google Scholar 

  • Silman, I., and Futerman, A. H. (1987). Mode of attachment of acetylcholinesterase to the surface membrane.Eur. J. Biochem. 17011–22.

    Google Scholar 

  • Sofeq, H., Zamir, R., Zevin-Sonkin, D., and Zakut, H. (1987). Human cholinesterase genes localized by hybridization to chromosome 3 and 16.Hum. Genet. 77325–328.

    Google Scholar 

  • Takeo, K. (1987). Affinity electrophoresis. InAdvances in Electrophoresis, Vol. 1 (A. Chrambach, M. J. Dunn, and B. J. Radola, Eds.), VCH, Weinheim, New York, pp. 229–279.

    Google Scholar 

  • Takeo, K., and Nakamura, S. (1972). Dissociation Constants of glucan phosphorylases of rabbit tissues studied by polyacrylamide gel disc electrophoresis,Arch.Biochem. Biophys. 1531–7.

    Google Scholar 

  • Toutant, J. P. (1989). Insect acetylcholinesterase: Catalytic properties, tissue distribution and molecular forms,Prog.Neurobiol. 32423–446.

    Google Scholar 

  • Usdin, E. (1970). Aging. InAnticholinesterase Agents (A. G. Karczmar, E. Usdin, and J. H. Wills, Eds.), Pergamon Press, Oxford, pp. 249–262.

    Google Scholar 

  • Valentino, R. J., Lockridge, O., Eckerson, H. W., and La Du, B. N. (1981). Prediction of drug sensitivity in individuals with atypical serum cholinesterase based on in vitro biochemical studies.Biochem. Pharmacol. 301643.

    Google Scholar 

  • Weber, G., and Drickamer, H. G. (1983). The effect of high pressure upon proteins and other biomolecules.Q. Rev. Biophys. 1689–112.

    Google Scholar 

  • Whittaker, M. (1986).Cholinesterase, Karger, Basel.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masson, P. Structural and functional investigations of cholinesterases by means of affinity electrophoresis. Cell Mol Neurobiol 11, 173–189 (1991). https://doi.org/10.1007/BF00712808

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00712808

Key words

Navigation