Cellular and Molecular Neurobiology

, Volume 9, Issue 4, pp 461–468 | Cite as

Distribution and subtype determination ofβ-receptors in the spinal cord of the adult rat

  • Ewald Schrader
  • Horst Grobecker
Article

Summary

  1. 1.

    We determined the number ofβ-receptors in the whole spinal cord of the adult rat and in the cervical, thoracal, and lumbal/sacral parts.

     
  2. 2.

    The undivided spinal cord contains 47 ± 10 fmol/mgβ-receptors (KD = 2066 ± 982 pmol/liter), and the cervical part of the spinal cord contains 53 ± 8 fmol/mg protein (KD = 3224 ± 1775 pmol/liter). The thoracal part shows 40 ± 1 fmol/mg protein (KD = 3229 ± 104 pmol/liter), and the lumbal/sacral spinal cord contains 48 ± 8 fmol/mg protein (KD = 3610 ± 1610 pmol/liter).

     
  3. 3.

    Competitive inhibition studies withl-practolol,dl-atenolol, and ICI 118,551 were performed and we calculated by a computer program in the whole spinal cord the following ratio ofβ-receptor subtypes: 80 ± 5%β1-receptors and 20 ± 5%β2-receptors.

     
  4. 4.

    The basal and (−)-isoproterenol- and NaF-stimulated activity of adenylate cyclase was highest in the cervical part of the spinal cord and equally distributed between the thoracal and the lumbal/sacral parts.

     
  5. 5.

    The whole synaptosomal protein of the cervical part of the spinal cord contained 132 ± 20 fmol, the thoracal part 117 ± 3 fmol, and the lumbal/sacral part 133 ± 22 fmol.

     

Key words

spinal cord adult rat subtype β-adrenergic receptor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benfenati, F., and Guardabasso, V. (1982). InPrinciples and Methods in Receptor Binding (F. Cattabani and S. Nicosia, Eds.), Plenum Press, New York, London, pp. 41–63.Google Scholar
  2. Bristow, M. R., Cubicciotti, R., Ginsburg, R., Stinson, E. B., and Johnson, C. (1982). Histaminemediated adenylate cyclase stimulation in human myocardium.Mol. Pharmacol. 21671–679.Google Scholar
  3. Bylund, D. B., and Snyder, S. H. (1976). Beta adrenergic receptor binding in membrane preparations from mammalian brain.Mol. Pharmacol. 12568–580.Google Scholar
  4. Carlsson, A., Falck, B., Fuxe, K., and Hillarp, N. (1964). Cellular localization of monamines in the spinal cord.Acta Physiol. Scand. 60112–119.Google Scholar
  5. Coote, J. H. (1988). The organization of cardiovascular neurons in the spinal cord.Rev. Physiol. Biochem. Pharmacol. 110147–291.Google Scholar
  6. Davis, J. N., and Lefkowitz, R. J. (1976).β-Adrenergic receptor binding: Synaptic localization in rat brain.Brain Res. 113214–218.Google Scholar
  7. Hancock, A. A., DeLean, A. L., and Lefkowitz, R. J. (1979). Quantitative resolution of beta-adrenergic receptor subtypes by selective ligand binding: Application of a computerized model fitting technique.Mol. Pharmacol. 161–9.Google Scholar
  8. Harden, T. K., and McCarthy, K. D. (1982). Identification of the beta adrenergic receptor subtype on astroglia purified from rat brain.J. Pharmacol. Exp. Ther. 222600–605.Google Scholar
  9. Herdon, H. J., Wilkinson, M., and Madani, M. O. (1983).α- andβ-adrenergic binding sites in sheep cerebral cortex: Characterization, effects of photoperiod and treatment with estrogen/progesterone.Brain Res. Bull. 10159–161.Google Scholar
  10. Klotz, I. M., and Hunston, D. L. (1971). Properties of graphical representations of multiple classes of binding sites.Biochemistry 103065–3069.Google Scholar
  11. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951). Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193265–275.Google Scholar
  12. Melamed, E., Lahav, M., and Atlas, D. (1976). Histochemical evidence forβ-adrenergic receptors in the rat spinal cord.Brain Res. 116511–515.Google Scholar
  13. Minneman, K. P., Hegstrand, L. R., and Molinoff, P. B. (1979). Simultaneous determination of beta-1 and beta-2-adrenergic receptors in tissues containing both receptor subtypes.Mol. Pharmacol. 1634–46.Google Scholar
  14. Munson, P. J., and Rodbard, D. (1980). Ligand: A versatile computerized approach for characterization of ligand-binding systems.Anal. Biochem. 107220–239.Google Scholar
  15. Nahorski, S. R. (1978). Heterogeneity of cerebralβ-adrenoceptor binding sites in various vertebrate species.Eur. J. Pharmacol. 51199–209.Google Scholar
  16. Rugg, E. L., Barnett, D. B., and Nahorski, S. R. (1978). Coexistence of beta1 and beta2 adrenoceptors in mammalian lung: Evidence from direct binding studies.Mol. Pharmacol. 14996–1005.Google Scholar
  17. U'Prichard, D. C., Bylund, D. B., and Snyder, S. H. (1978). (+−)-[3H]Epinephrine and (−)-[3H]dihydroalprenolol binding toβ1- andβ2-noradrenergic receptors in brain, heart, and lung membranes.J. Biol. Chem. 2535090–5102.Google Scholar
  18. Young, A. B., and Snyder, S. H. (1973). Strychnine binding associated with glycine receptors of the central nervous system.Proc. Natl. Acad. Sci. USA 702832–2836.Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • Ewald Schrader
    • 1
  • Horst Grobecker
    • 1
  1. 1.Department of PharmacologyUniversity of RegensburgRegensburgWest Germany

Personalised recommendations