Advertisement

Boundary-Layer Meteorology

, Volume 73, Issue 4, pp 321–341 | Cite as

Formulation and verification of a land surface parameterization for atmospheric models

  • Michael G. Bosilovich
  • Wen-Yih Sun
Article

Abstract

The need for a well-defined lower boundary condition for atmospheric numerical models is well documented. This paper describes the formulation of a land surface parameterization, which will be used in atmospheric boundary-layer and mesoscale numerical models. The land surface model has three soil layers for the prediction of soil moisture and soil temperature. Model soil properties depend on soil texture and moisture content. A homogeneous distribution of vegetation is also included, so that transpiration may be included, as well as the interception of precipitation by vegetation elements. The simulated vegetation also affects the mean surface albedo and roughness characteristics.

First ISLSCP Field Experiment (FIFE) data are used to verify the model. Three cases during the growing season were chosen, each case having different amounts of vegetation cover. “Stand alone” simulations, where observations of atmospheric and radiation variables are input to the land surface model, were performed. These simulations show that the model is able to reproduce observed surface energy budgets and surface temperatures reasonably well. The RMS differences between modeled and obsered turbulent fluxes of heat and moisture are quite comparable to those reported by more detailed land surface models.

Keywords

Land Surface Surface Albedo Land Surface Model Model Soil Turbulent Flux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ács, F.: 1994, ‘A Coupled Soil-Vegetation Scheme: Description, Parameters, Validation and Sensitivity Studies’,J. Appl. Meteorol. 33, 268–284.Google Scholar
  2. Argentini, S., Wetzel, P. J., and Karyampudi, V. M.: 1992, ‘Testing a Detailed Biophysical Parameterization for Land — Air Exchange in a High Resolution Boundary Layer Model’,J. Appl. Meteorol. 31, 142–156.Google Scholar
  3. Arya, S. P.: 1988,Introduction to Micrometeorology, Academic Press, 307 pp.Google Scholar
  4. Avissar, R.: 1993, ‘Observations of the Leaf Stomatal Conductance at the Canopy Scale: An Atmospheric Modeling Perspective’,Boundary-Layer Meteorol. 64, 127–148.Google Scholar
  5. Avissar, R. and Mahrer, Y.: 1988, ‘Mapping Frost Sensitive Areas with a Three-Dimensional Local Scale Numerical Model. Part 1: Physical and Numerical Aspects’,J. Appl. Meteorol. 27, 400–413.Google Scholar
  6. Avissar, R. and Pielke, R.: 1989, ‘A Parameterization of Heterogeneous Land Surface for Atmospheric Numerical Models and its Impact on Regional Meteorology’,Mon. Wea. Rev. 117, 2113–2136.Google Scholar
  7. Beljaars, A. and Holtslag, A.: 1991, ‘Flux Parameterization over Land Surfaces for Atmospheric Models’,J. Appl. Meteorol. 30, 327–341.Google Scholar
  8. Benoit, R.: 1977, ‘On the Integration of the Surface Layer Profile Gradient Functions’,J. Appl. Meteorol. 16, 859–860.Google Scholar
  9. Bhumralkar, C. M.: 1975, ‘Numerical Experiments on the Computation of Ground Surface Temperature in an Atmospheric General Circulation Model’,J. Appl. Meteorol. 14, 1246–1258.Google Scholar
  10. Blackadar, A. K.: 1976, ‘Modeling the Nocturnal Boundary Layer’,Proc of the Third Symposium on Atmospheric Turbulence, Diffusion, and Air Ouality. Amer. Meteorol. Soc., 46–49.Google Scholar
  11. Blondin, C.: 1988, ‘Research on Land Surface Parameterization Schemes at ECMWF’,Workshop Proceedings: Parameterization of Fluxes over Land Surface. European Center for Medium Range Weather Foreacasts, Reading, U.K., 285–330.Google Scholar
  12. Bougeault, P., Noilhan, J., Lacarrère, P., and Mascart, P.: 1991a, ‘An Experiment with an Advanced Surface Parameterization in a Mesobeta-Scale Model. Part 1: Implementation’,Mon. Wea. Rev. 119, 2354–2373.Google Scholar
  13. Bougeault, P., Bret, P., Lacarrère, P., and Noilhan, J.: 1991b, ‘An Experiment with an Advanced Surface Parameterization in a Mesobeta-Scale Model. Part 2: The 16 June 1986 Simulation’,Mon. Wea. Rev. 119, 2374–2392Google Scholar
  14. Braud, I., Noilhan, J., Bessemoulin, P., Mascart, P., Haverkamp, R., and Vauclin, M.: 1993, ‘Bare-Ground Surface Heat and Water Exchanges Under Dry Conditions: Observations and Parameterization’,Boundary-Layer Meteorol.,66, 173–200.Google Scholar
  15. Clapp, R. B. and Hornberger, G. M.: 1978, ‘Empirical Equations for some Soil Hydraulic Properties’,Water Resour. 14, 601–604.Google Scholar
  16. Deardorff, J. W.: 1977, ‘A Parameterization of the Ground Surface Moisture Content for use in Atmospheric Prediction Models’,J. Appl. Meteorol. 16, 1182–1185.Google Scholar
  17. Deardorff, J. W.: 1978, ‘Efficient Prediction of Ground Surface Temperature and Moisture with Inclusion of a Layer of Vegetation’,J. Geophys. Res. 20, 1889–1903.Google Scholar
  18. Dickinson, R. E.: 1984, ‘Modeling Evapotranspiration for Three Dimensional Global Climate Models’,Climate Processes and Climate Sensitivity, Geophys. Monogr. 29, 58–72.Google Scholar
  19. Jacquemin, B. and Noilhan, J.: 1990, ‘Sensitivity Study and Validation of a Land Surface Parameterization using the HAPEX-MOBILHY Data Set’,Boundary-Layer Meteorol. 52, 93–134.Google Scholar
  20. Kondo, J., Saigusa, N., and Sato, T.: 1990, ‘A Parameterization of Evaporation from Bare Soil Surfaces’,J. Appl. Meteorol. 29, 385–389.Google Scholar
  21. Kondo, J., Saigusa, N., and Sato, T.: 1992, ‘A Model and Experimental Study of Evaporation from Bare Soil Surfaces’,J. Appl. Meteorol. 31, 304–312.Google Scholar
  22. Lee, T. J. and Pielke, R. A.: 1992, ‘Estimating the Soil Surface Specific Humidity’,J. Appl. Meteorol. 31, 480–484.Google Scholar
  23. Mahfouf, J. F. and Noilhan, J.: 1991, ‘Comparative Study of Various Formulations of Evaporation from Bare Soil using In Situ Data’,J. Appl. Meteorol. 30, 1354–1365.Google Scholar
  24. Mihailovic, D., Pielke, R., Rajkovic, B., Lee, T., and Jeftic, M.: 1993, ‘A Resistance Representation of Schemes for Evaporation from Bare and Partly Plant Covered Surfaces for use in Atmospheric Models’,J. Appl. Meteorol. 32, 1038–1054.Google Scholar
  25. Monteith, J. L.: 1975,Vegetation and the Atmosphere. Vol. 1: Principles. Academic Press, 278 pp.Google Scholar
  26. Monteith, J. L.: 1976,Vegetation and the Atmosphere. Vol. 2: Case Studies. Academic Press, 439 pp.Google Scholar
  27. Nickerson, E. and Smiley, V.: 1975, ‘Surface Layer and Energy Budget Parameterization for Meso-Scale Models’,J. Appl. Meteorol. 14, 297–300.Google Scholar
  28. Noilhan, J. and Planton, S.: 1989, ‘A Simple Parameterization of Land Surface Processes for Meteorological Models’,Mon. Wea. Rev. 117, 536–549.Google Scholar
  29. Pielke, R.: 1984,Mesoscale Meteorological Modeling. Academic Press, 612 pp.Google Scholar
  30. Sellers, P. J., Mintz, Y., Sud, Y., and Dalcher, A.: 1986, ‘The Design of a Simple Biosphere Model (SiB) for Use Within General Circulation Models’,J. Atmos. Sci. 43, 505–531.Google Scholar
  31. Sellers, P. J. and Dorman, J. L.: 1987, ‘Testing the Simple Biosphere Model (SiB) with Point Micrometeorological and Biophysical Data’,J. Climate Appl. Meteorol. 26, 622–651.Google Scholar
  32. Sellers, P. J., Hall, FG, Asrar, G., Strebel, D. E., and Murphy, R. E.: 1988, ‘The First ISLSCP Field Experiment (FIFE)’,Bull. Amer. Meteorol. Soc. 69, 22–27.Google Scholar
  33. Sellers, P. J. and Hall, F. G.: 1992, ‘FIFE in 1992: Results, Scientific Gains, and Future Research Directions’,J. Geophys. Res. 97 (D17), 19091–19109.Google Scholar
  34. Siebert, J., Sievers, U., and Zdunkowski, W.: 1992, ‘A One-Dimensional Simulation of the Interaction Between Land Surface Processes and the Atmosphere’,Boundary-Layer Meteorol. 59, 1–34.Google Scholar
  35. Smith, E., Crosson, W. and Tanner, B.: 1992, ‘Estimation of Surface Heat and Moisture Fluxes over a Prairie Grassland 1. In Situ Energy Budget Measurements Incorporating a Cooled Mirror Dew Point Hygromer’,J. Geophys. Res. 97 (D17), 18557–18582.Google Scholar
  36. Smith, E., Cooper, H., Crosson, W., and Heng-yi, W.: 1993, ‘Estimation of Surface Heat and Moisture Fluxes over a Prairie Grassland 3. Design of a Hybrid Physical/Remote Sensing Biosphere Model’,J. Geophys. Res. 98 (D3), 4951–4978.Google Scholar
  37. Strebel, D. E., Newcomer, J. A., Ornsby, J. P., Hall, F. G., and Sellers, P. J.: 1990, ‘The FIFE Information System’,IEEE Trans. Ceosci. and Remote Sensing 28, 703–710.Google Scholar
  38. Stull, R. B.: 1988,An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, 665 pp.Google Scholar
  39. Sun, W.-Y. and Wu, C.-C.: 1992, ‘Formation and Diurnal Variation of the Dryline’,J. Atmos. Sci. 49, 1606–1619.Google Scholar
  40. Sun, W.-Y.: 1993a, ‘Numerical Simulation of a Planetary Boundary Layer: Part I. Cloud Free Case’,Beitr. Phys. Atmosph. 66, 3–16.Google Scholar
  41. Sun, W.-Y.: 1993b, ‘Numerical Simulation of a Planetary Boundary Layer: Part I. Cloudy Case’,Beitr. Phys. Atmosph. 66, 17–29.Google Scholar
  42. Sun, W.-Y. and Chern, J.-D.: 1993, ‘Diurnal Variation of Lee Vortices in Taiwan and the Surrounding Area’,J. Atmos. Sci. 50, 3404–3430.Google Scholar
  43. Sun, W.-Y. and Chern, J.-D.: 1994, ‘Numerical Experiments of Vortices in the Wakes of Large Idealized Mountains’,J. Atmos. Sci. 51, 191–209.Google Scholar
  44. Tjernstrom, M.: 1989, ‘Some Tests with a Surface Energy Balance Scheme, Including a Bulk Parameterization for Vegetation, in a Mesoscale Model’,Boundary-Layer Meteorol. 48, 33–67.Google Scholar
  45. Wang, J.: 1992, ‘An Overview of the Measurements of Soil Moisture and Modeling of Moisture Flux in FIFE’,J. Geophys. Res. 97 (D17), 18955–18959.Google Scholar
  46. Wetzel, P. J. and Chang, J. T.: 1987, ‘Concerning the Relationship Between Evapotranspiration and Soil Moisture’,J. Clin. and Appl. Meteorol. 26, 18–27.Google Scholar
  47. Wetzel, P.J., and Chang, J. T.: 1988, ‘Evapotranspiration from Nonuniform Surface: A First Approach for Short Term Numerical Weather Prediction’,Mon. Wea. Rev. 116, 600–621.Google Scholar
  48. Wu, C.-C.: 1987, ‘Numerical Study of Diurnal Variation of the Dryline’, Ph D. Thesis. Purdue University. 235 pp.Google Scholar
  49. Ye, Z. and Pielke, R.: 1993, ‘Atmospheric Parameterization of Evaporation from Non-Plant Covered Surfaces’,J. Appl. Meteorol. 32, 1248–1258.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Michael G. Bosilovich
    • 1
  • Wen-Yih Sun
    • 1
  1. 1.Purdue UniversityWest LafayetteUSA

Personalised recommendations