Skip to main content
Log in

High-temperature reaction in titanium alloy-ceramic fiber composite materials

  • Composite Materials
  • Published:
Metal Science and Heat Treatment Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. W. Koop and C. Gross, "Metal matrix composites structural design experience," AIAA Papers, No. 2175, 1–6 (1990).

    Google Scholar 

  2. US Pat. 4807798, IPC4 B23k 20/22, B23k 31/00.

  3. T. Hayashi, "Recent research and development, future problems and trends in advanced composite materials in Japan," Sadhana,11, No. 3-4, 229–325 (1987).

    Google Scholar 

  4. J. M. Yang, S. M. Jeng, and C. J. Yang, "Fracture mechanisms of fiber-reinforced titanium alloy matrix composites. 1: Interfacial behavior. 2: Tensile behavior. 3: Toughening behavior," Mater. Sci. Eng.,A138, No. 2, 155–190 (1991).

    Google Scholar 

  5. "Sputter deposited barrier coatings on SiC monofilaments for use in reactive metallic matrices": 1. R. R. Kieschke, R. E. Somekh, and T. W. Clyne, "Optimization of barrier structure"; 2. C. M. Warwick, R. R. Kieschke, and T. W. Clyne, "System stress state"; 3. R. R. Kieschke, C. M. Warwick, and T. W. Clyne, "Microstructural stability in composites based on magnesium and titanium," Acta Met. Mater.,39, No. 4, 427–452 (1991).

    Google Scholar 

  6. K. Itoh, J. Jpn. Weld. Soc.,59, No. 6, 54–60 (1990).

    Google Scholar 

  7. S. B. Zasday, "Production and properties of titanium for high temperature application," Ind. Heat.,57, No. 12, 19–23 (1990).

    Google Scholar 

  8. A. G. Metcalfe, "Topics in the physical chemistry of interfaces in composite materials," in: Interfaces in Metal Matrix Composites [Russian translation], Mir, Moscow (1978), Vol. 1, pp. 77–136.

    Google Scholar 

  9. P. Martineau, R. Pailler, M. Zahaye, and R. Naslain, "SiC filament to titanium matrix composites regarded as model composites. Pt. 2. Fibre/matrix chemical interactions at high temperatures," J. Mater. Sci.,9, 2749–2770 (1984).

    Google Scholar 

  10. P. Soumelidis, J. M. Quenisset, R. Naslain, and N. S. Stoloff, "Effect of the filament nature on fatigue crack growth in titanium-based composites reinforced by boron, B/(B4C) and SiC filaments," J. Mater. Sci.,21, No. 3, 895–903 (1986).

    Google Scholar 

  11. K. Horda, J. Shinohara, and A. Okura, Reft. Inst. Ind. Sci. Univ., Tokyo,35, No. 7, 215–250 (1991).

    Google Scholar 

  12. T. Onzawa, A. Suzumura, and J. H. Kim, Quart. J. Jpn. Weld. Soc.,8, No. 4, 510–514 (1990).

    Google Scholar 

  13. C. Jones, S. J. Kiley, and S. S. Wang, "The characterization of an SCS 6/Ti-6Al-4V MMS interphase," J. Mater. Res.,4, No. 2, 327–335 (1989).

    Google Scholar 

  14. K. Bilba, J. P. Manaud, Y. L. Petitcorps, and J. M. Quenisset, "Investigation of diffusion barrier coatings on SiC monofilmaments for use in titanium-based composites," Mater. Sci. Eng.,A135, 141–144 (1991).

    Google Scholar 

  15. T. Araki, A. Hirose, Y. Matsuhiro, M. Kotoh, and S. Tonita, J. Soc. Mater. Sci., Jpn.,40, No. 453, 682–688 (1991).

    Google Scholar 

Download references

Authors

Additional information

A. A. Baikov Institute of Metallurgy. Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 11, pp. 29–32, November, 1993.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakarinov, V.I., Meshcheryakov, V.N. High-temperature reaction in titanium alloy-ceramic fiber composite materials. Met Sci Heat Treat 35, 643–648 (1993). https://doi.org/10.1007/BF00712287

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00712287

Keywords

Navigation