International Journal of Theoretical Physics

, Volume 6, Issue 6, pp 415–424 | Cite as

Parastatistics and Dirac brackets

  • A. J. Kálnay


Parastatistics (parafields) has been used in relation to several models of physical systems like the quark and the nuclear shell models. However, the physics of parafields is not completely clear. If classical para-Bose or para-Fermi variables could be constructed, then because of the correspondence principle some traces of the corresponding quantum properties could be found at the classical limit. In this way, by studying the simplestc-number systems some hints for the quantum of parafields could be expected.

We introduce and discuss classical paravariables. We constructc-number para-Fermi variables in terms of coupled classical oscillators. Several similarities to the corresponding quantum case are observed. The results support Cusson's remark that systems described in terms of parastatistics may really be composite systems.


Field Theory Elementary Particle Quantum Field Theory Physical System Shell Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alonso, V., Kálnay, A. J. and Mujica, J. D. (1970).International Journal of Theoretical Physics, Vol. 3, No. 2, p. 165.Google Scholar
  2. Cusson, R. Y. (1969).Annals of Physics (N. Y.),55, 22.Google Scholar
  3. Dirac, P. A. M. (1950).Canadian Journal of Mathematics,2, 129.Google Scholar
  4. Dirac, P. A. M. (1964).Lectures on Quantum Mechanics. Belfer Graduate School of Science, Yeshiva University, New York.Google Scholar
  5. Droz-Vincent, P. (1966).Annales de l'Institut Henri Poincaré, Sec. A,5, 257.Google Scholar
  6. Franke, W. H. and Kálnay, A. J. (1970).Journal of Mathematical Physics,11, 1729.Google Scholar
  7. Green, H. S. (1953).Physical Review,90, 270.Google Scholar
  8. Greenberg, O. W. (1964).Physical Review Letters,13, 598.Google Scholar
  9. Greenberg, O. W. and Messiah, A. M. L. (1965).Physical Review,138, B 1155.Google Scholar
  10. Kademova, K. V. (1970a).International Journal of Theoretical Physics, Vol. 3, No. 2, p. 109.Google Scholar
  11. Kademova, K. V. (1970b).Nuclear Physics,B15, 350.Google Scholar
  12. Kademova, K. V. and Kálnay, A. J. (1970).International Journal of Theoretical Physics, Vol. 3, No. 2, p. 115.Google Scholar
  13. Kálnay, A. J. and Ruggeri, G. J. (1972).International Journal of Theoretical Physics,6, 167.Google Scholar
  14. Kálnay, A. J. (to be submitted for publication). ‘The electron field and the Dirac bracket’.Google Scholar
  15. Kálnay, A. J., Alonso, V., Franke, W. H. and Mujica, J. D. (to be submitted for publication). ‘A quantum-like formulation of classical mechanics: I-General Case’.Google Scholar
  16. Kálnay, A. J. and Mac Cotrina, E. (submitted for publication). ‘A remark on the observables of Fermi systems described in terms of bosons’.Google Scholar
  17. Kálnay, A. J. and Kademova, K. V. (to be submitted for publication). ‘Observables and transformation properties of fermions constructed in terms of bosons’.Google Scholar
  18. Kálnay, A. J., MacCotrina, E. and Kademova, K. V. (to be published in theInternational Journal of Theoretical Physics). ‘Quantum field theory of fermions constructed from bosons. Generalization to parastatislics’.Google Scholar
  19. Morpurgo, G. (1970).Annual Review of Nuclear Science,20, 105.Google Scholar
  20. Rickart, C. E. (1960).General Theory of Banach Algebras. D. Van Nostrand Company, Inc., Princeton, Toronto, London, New York.Google Scholar

Copyright information

© Plenum Publishing Company Limited 1972

Authors and Affiliations

  • A. J. Kálnay
    • 1
    • 2
  1. 1.Departamento de Física Atómica y MolecularIVICCaracasVenezuela
  2. 2.International Centre for Theoretical PhysicsTriesteItaly

Personalised recommendations