Skip to main content
Log in

On the computation of special functions with applications to non-linear and inhomogeneous waves

  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Large amplitude and inhomogeneous oscillations in compressible fluids, are described by wave equations which are non-linear or have variable coefficients, and whose solutions can be obtained exactly, in specific cases, in terms of special functions, usually particular or generalized forms of the hypergeometric type. We present a simple method for the calculation of generalized hypergeometric functions, including a statement of the conditions of convergence for all values of the variable and parameters, an estimate of the rate of convergence and upper bound for the error of truncation, and a discussion of rounding-off errors and ways to reduce them. The method is illustrated by three applications, namely, a non-linear pulse in a viscous fluid, resonant modes of an acoustic horn, and oscillations in a column of gas stratified in density and temperature. These three cases illustrate the acoustics of linear and non-linear waves, propagating or standing, in inhomogeneous, viscous or heated fluid, in free space or confined in ducts. We conclude with an indication of the efficiency of the algorithm in obtaining the preceding results, i. e., the accuracy after a given number of iterations, for some of the preceding problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz, M.; Stegun, I. (1964): Handbook of mathematical functions. New York: Dover

    Google Scholar 

  • Adam, J. A: (1982): Asymptotic solutions and spectral theory of linear wave equations. Phys. Rep. 86, 217–316

    Google Scholar 

  • Aleksandrov, A. D.; Kolmogorov, A. N.; Laurentiev, M. A. (1965): Mathematics: its content, methods and meaning. Cambridge (Mass.): M I T Press

    Google Scholar 

  • Bailey, W. N. (1935): The generalized hypergeometric series: Cambridge (England): University Press

    Google Scholar 

  • Ballantine, S. (1927): On the propagation of sound in the general Bessel horn of infinite length. J. Franklin Inst. 203, 85–101

    Google Scholar 

  • Beer, T. (1974): Atmospheric waves. New York: Wiley

    Google Scholar 

  • Branders, M.; Piessens, R.; De Meue, M. (1981): Rational approximations to the zeros of Bessel functions. J. Comp. Phys. 42, 403–405

    Google Scholar 

  • Bromwich, J. T. A. (1926): Theory of infinite series. London: MacMillan

    Google Scholar 

  • Burgers, J. M. (1948): A mathematical model illustrating the theory of turbulence. Adv. Appl. Maths. 10, 171–179

    Google Scholar 

  • Burgers, J. M. (1964): The non-linear diffusion equation. Amsterdam: North-Holland

    Google Scholar 

  • Campos, L. M. B. C. (1977): On the generation and radiation of magneto-acoustic waves. J. Fluid Mech. 81, 529–549

    Google Scholar 

  • Campos, L. M. B. C. (1978a): On the emission of sound by an ionized inhomogeneity. Proc. Roy. Soc. A351, 65–91

    Google Scholar 

  • Campos, L. M. B. C. (1978b): On the spectral broadening of sound by turbulent shear layers. J. Fluid Mech. 81, 723–783

    Google Scholar 

  • Campos, L. M. B. C. (1982): On anisotropic, dispersive and dissipative wave equations. Portug. Mathem. 41, 13–32

    Google Scholar 

  • Campos, L. M. B. C. (1983a): Modern trends in research on waves in fluids. Portug. Phys. 11, 121–173

    Google Scholar 

  • Campos, L. M. B. C. (1983b): On magnetoacoustic-gravity waves propagating or standing vertically in an atmosphere. J. Physics A16, 417–437

    Google Scholar 

  • Campos, L. M. B. C. (1983c): On viscous and resistive dissipation of hydrodynamic and hydromagnetic waves in atmospheres. J. Méc. Théor. Appl. 2, 861–891

    Google Scholar 

  • Campos, L. M. B. C. (1983d): On two-dimensional acoustic-gravity waves in model anisothermal atmospheres. Wave Motion 5, 1–14

    Google Scholar 

  • Campos, L. M. B. C. (1984a): Sur la propagation du son dans les Écoulements non-uniformes et non-stationaires. Revue d'Acoustique 67, 217–233

    Google Scholar 

  • Campos, L. M. B. C. (1984b): On a theory of solar spicules and the atmospheric mass balance. Month. Not. Roy. Astron. Soc. 207, 547–574

    Google Scholar 

  • Campos, L. M. B. C. (1984c): On the propagation of sound in nozzles of strongly-varying cross-section containing a low Mach number flow. Z. Flugwiss. Weltraumf. 8, 97–109

    Google Scholar 

  • Campos, L. M. B. C. (1984d): On some general properties of the exact acoustic fields in horns and baffles. J. Sound Vib. 95, 177–201

    Google Scholar 

  • Campos, L. M. B. C. (1984e): On a concept of derivative of complex order with application to special functions. IMA J. Appl. Maths. 33, 109–133

    Google Scholar 

  • Campos, L. M. B. C. (1985a): On the fundamental acoustic mode in variable-area low Mach number nozzles. Progr. Aerosp. Sci. 22, 1–27

    Google Scholar 

  • Campos, L. M. B. C. (1985b): On vertical hydromagnetic waves in a compressible atmosphere under an oblique magnetic field. Geophys. Astrophys. Fluid Dyn. 32, 217–272

    Google Scholar 

  • Campos, L. M. B. C. (1985c): On rules of derivation with complex order of analytic and branched functions. Portug. Mathem. 43, 347–376

    Google Scholar 

  • Campos, L. M. B. C. (1986a): On waves in fluids. Part 1: Acoustics of jets, turbulence and ducts. Rev. Mod. Phys. 58, 117–182

    Google Scholar 

  • Campos, L. M. B. C. (1986b): On a systematic approach to some properties of special functions. IMA J. Appl. Maths. 36, 191–206

    Google Scholar 

  • Campos, L. M. B. C. (1986c): On linear and non-linear wave equations in the acoustics of high-speed potential flows. J. Sound Vib. 110, 41–57

    Google Scholar 

  • Campos, L. M. B. C. (1987a): On waves in fluids. Part 2: Interaction of sound with magnetic and internal modes. Rev. Mod. Phys. 59, 363–463

    Google Scholar 

  • Campos, L. M. B. C. (1987b): On longitudinal acoustic propagation in convergent and divergent nozzle flows. J. Sound Vib. 117, 131–151

    Google Scholar 

  • Campos, L. M. B. C. (1987c): On extensions of Laurent's theorem in the fractional calculus with applications to the generation of higher transcendental functions. Mat. Vesnik 39, 375–390

    Google Scholar 

  • Caratheodory, C. (1972): Theory of functions. New York: Chelsea Publ.

    Google Scholar 

  • Carlson, B. C. (1977): Special functions of mathematical physics. New York: Academic Press

    Google Scholar 

  • Cole, J. D. (1950): A quasi-linear parabolic equation occurring in aerodynamics. Q. J. Appl. Math. 9, 225–236

    Google Scholar 

  • Courant, R.; Hilbert, D. (1953): Methods of mathematical physics. New York: Interscience

    Google Scholar 

  • Crighton, D. G. (1979): Model equations for non-linear acoustics. Ann. Rev. Fluid Mech. 11, 11–33

    Google Scholar 

  • Eisner, E. (1966): Complete solutions of Webster's horn equation. J. Acoust. Soc. Am. 41, 1126–1149

    Google Scholar 

  • Erdelyi, A. (1953): Higher transcendental functions. New York: McGraw Hill

    Google Scholar 

  • Forsyth, A. R. (1929): Differential equations. London: MacMillan

    Google Scholar 

  • Gossard, E. A.; Hooke, W. (1975): Waves in the atmosphere. Amsterdam: Elsevier

    Google Scholar 

  • Gottlieb, D.; Orszag, S.A. (1977): Spectral methods. Philadelphia: SIAM

    Google Scholar 

  • Gradshteyn, I. S.; Rhyzik, I. M. (1963): Tables of integrals, series and products. New York: Academic Press

    Google Scholar 

  • Hopf, E. (1951): The partial differential equationu i +uxu =u xx. Com. Pure Appl. Maths. 3, 201–230

    Google Scholar 

  • Jeffreys, H.; Jefreys, B. S. (1956): Methods of mathematical physics. Cambridge (England): University Press

    Google Scholar 

  • Knopp, K. (1947): Theory and application of infinite series. London: Blackie

    Google Scholar 

  • Lamb, H. (1910): On the theory of waves propagated vertically in the atmosphere. Proc. Lend. Math. Soc. 7, 122–141

    Google Scholar 

  • Lamb, H. (1932): Hydrodynamics. Cambridge (England): University Press

    Google Scholar 

  • Landau, L. D.; Lifshitz, E. F. (1953): Fluid Mechanics. Oxford (England): Pergamon Press

    Google Scholar 

  • Lighthill, M. J. (1956): Viscosity effects on sound waves of finite amplitude, pp. 250–351, in: Surveys in mechanics: Batchelor, G. K. ed. Cambridge (England): University Press

    Google Scholar 

  • Lighthill, M. J. (1964): Group velocity. IMA J. Appl. Maths. 1, 1–24

    Google Scholar 

  • Lighthill, M. J. (1978): Waves in Fluids. Cambridge (England): University Press

    Google Scholar 

  • Liu, C. H.; Yeh, C. S. (1974): Acoustic-gravity waves in the upper atmosphere. Rev. Geophys. Space Sci. 12, 193–216

    Google Scholar 

  • Luke, Y. L. (1975): Mathematical functions and approximations. New York: McGraw-Hill

    Google Scholar 

  • Morse, D. W. & Spiegel, E. A. (1964): The generation and propagation of waves in a compressible atmosphere. Astrophys. J. 139, 48–64

    Google Scholar 

  • Morse, P. M. & Feshbach, H. (1953): Methods of theoretical physics. New York: McGraw Hill

    Google Scholar 

  • Olson, H. F. & Wollf, E. (1930): A sound concentrator for microphones. J. Acoust. Soc. Am. 1, 410–417

    Google Scholar 

  • Rayleigh, J. W. S. (1890): On the vibrations of an atmosphere. Phil. Mag. 31, 89–96

    Google Scholar 

  • Rayleigh, J. W. S. (1916): On the propagation of sound in narrow tubes of variable section. Phil. Mag. 31, 89–96

    Google Scholar 

  • Titchmarsh, E. C. (1935): Theory of functions. Oxford: University Press

    Google Scholar 

  • Watson, G. N. (1944): Bessel functions. Cambridge (England): University Press

    Google Scholar 

  • Webster, A. G. (1919): Acoustical impedance and the theory of horns and the phonograf. Proc. Nat. Acad. Sci. 5, 275–282

    Google Scholar 

  • Whitham, G. B. (1974): Linear and non-linear waves. New York: Wiley

    Google Scholar 

  • Whittaker, E. T. & Watson, G. N. (1902): Course of Modern Annalysis. Cambridge (England): University Press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by S. N. Atluri, May 17, 1987

Work supported by C.A.U.T.L./I.N.I.C.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campos, L.M.B.C., Leitão, J.F.P.G.C. On the computation of special functions with applications to non-linear and inhomogeneous waves. Computational Mechanics 3, 343–360 (1988). https://doi.org/10.1007/BF00712148

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00712148

Keywords

Navigation