Computational Mechanics

, Volume 3, Issue 5, pp 309–319 | Cite as

A self-adaptive mesh refinement technique for boundary element solution of the Laplace equation.

  • J. J. Rencis
  • R. L. Mullen


A self-adaptive mesh refinement technique is developed for boundary element solutions of the two-dimensional Laplace equation. The method is based on error reduction and applied on the element and global level to estimate the error associated with each mesh. This adaptive technique is then utilized to analyze problems with and without singularities. Results employing constant two-dimensional boundary elements are presented.


Information Theory Boundary Element Global Level Element Solution Laplace Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Babuska, I.; Zienkiewicz, O. C.; Gago, J.; Oliveira, E. R. de A. (eds.) (1986): Accuracy estimates and adaptive refinements in finite element computations. Chichester: WileyGoogle Scholar
  2. Babuska, I.; Chandra, J.; Flaherty, J. (eds.) (1983): Adaptive computational methods for partial differential equations. Proc. workshop held at the University of Maryland, College Park/MD, February 14–16Google Scholar
  3. Babuska, I.; Rheinboldt, W. (1979): Analysis of optimal finite element meshes in R1. Math. Comput. 33, 435–563Google Scholar
  4. Babuska, I; Rheinboldt, W. (1978): A posteriori erro estimates for the finite element method. Int. J. Numer. Methods Eng. 12, 1597–1615Google Scholar
  5. Babuska, I.; Rheinboldt, W.; Mesztenyi, C. (1975): Self-adaptive refinements in the finite element method. Techn. TR-375; Inst. f. Fluid Dynamics and Applied Mathematics, Univ. of Maryland, College Park/MDGoogle Scholar
  6. Banerjee, P. K.; Butterfield, R. (1981): Boundary element methods in engineering science, pp. 48–54. London: McGraw-HillGoogle Scholar
  7. Brebbia, C. A. (ed.) (1981): Progress in boundary element methods, vol. 1, p. 297. New York: WileyGoogle Scholar
  8. Brebbia, C. A. (1978): The boundary element method for engineers, p. 46 & 50. New York: WileyGoogle Scholar
  9. Carey, G. F.; Oden, J. T. (1984): Finite element computational aspects, vol. III, pp. 23–129. Englewood Cliffs/NJ: Prentice-HallGoogle Scholar
  10. Carey, G. F.; Humphrey, D. L. (1981): Mesh refinement and iterative solution methods for finite element computations. Int. J. Numer. Methods Eng. 17, 1717–1734Google Scholar
  11. Crouch, S. L.; Starfield, A. M. (1983): Boundary element methods in solid mechanics. p. 39 & 158. London: Allen & UnwinGoogle Scholar
  12. Ghia, K.; Ghia, U. (eds.) (1983): Advances in grid generation. ASME Mongraph FED-5Google Scholar
  13. Melosh, R. J.; Marcal, P. V. (1977): An energy basis for mesh refinement of structural continua. Int. J. Numer. Methods Eng. 11, 1083–1091Google Scholar
  14. Mullen, R. L.; Rencis, J. J. (1987): Iterative methods for solving boundary element equations. Comput. Struct. 25/5, 713–723Google Scholar
  15. Rencis, J. J.; Mullen, R. L. (1986): Solution of elasticity problems by a self-adaptive mesh refinement technique for boundary element computation. Int. J. Numer. Methods Eng. 23, 1509–1527Google Scholar
  16. Rencis, J. J.; Mullen, R. L. (1984): Self-adaptive mesh refinement for boundary element solutions of Laplace equation. Proc. 21st arm. Meet. Soc. of engineering science, Blacksburg/VA, October 15–17Google Scholar
  17. Schultz, D. H. (1975): Two test cases for numerical solution of harmonic mixed boundary value problems. J. Inst. Math. Its Appl. 15, 1–8Google Scholar
  18. Shephard, M.; Gallagher, R. eds., (1979): Finite element grid optimization. ASME Monograph PVP-38Google Scholar
  19. Turcke, D. J.; McNeice, G. M. (1974): Guidelines for selecting finite element grids based on an optimization study. Comput. Struct. 4, 499–519Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • J. J. Rencis
    • 1
  • R. L. Mullen
    • 2
  1. 1.Mechanical Engineering Dept.Worcester Polytechnic InstituteWorcesterUSA
  2. 2.Dept. of Civil EngineeringCase Western Reserve UniversityClevelandUSA

Personalised recommendations