Skip to main content
Log in

Use of boundary-layer meteorological parameters in the Gaussian model ‘STACKS’

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The advanced Gaussian model STACKS includes improved descriptions of some boundarylayer meteorological parameters to calculate atmospheric dispersion from stacks. Instead of describing the influence of meteorology by making use of stability classes, the dispersion parameters σ y and σ x , with profiles and the height of the boundary layer are given as continuous functions of boundary-layer parameters. σ y and σ z are direct functions of turbulence parameters. Two ways to obtain the essential meteorological parameters (turbulence, vertical profiles and mixing height) are given: (i) use of an extended data set with detailed hourly measurements and (ii) application of boundary-layer relations based on the scaling concepts and using a synoptic data set.

Frequency distributions of stability classes as well asz i-values are investigated from the extended data set. Using our method of stability determination, much lower frequencies of the neutral class D are found compared to the traditional PGT (Pasquill-Gifford-Turner) stability classification scheme: instead of 70% neutral according to PGT, about 30% neutral (20% unstable and 50% stable) is estimated with our method for Dutch circumstances. This is also found when Golders' (1972) method is applied (with Obukhov length scale L). Also, in comparingz i-values independently derived from the extended data set (using an analysis of 3 years of balloon soundings), a shift is found toward smaller values compared to those found by recently reported advanced models (OML, HPDM, UKADM). Theoretical formulations for σ v , σ w andT j are evaluated with the extended data set resulting in correlation coefficients of about 0.8.

The effect of two basic parameters (turbulence andz i-values) on the long-term-averaged concentration pattern is shown and compared with the results of three other models: the OML and OPS models (representatives of other advanced models) and the Dutch National Model (DNM), representative of traditional models. For tall stacks, the concentration pattern calculated by the advanced models strongly differs from the one of DNM, which is typical for all comparisons between traditional and advanced models. Hence, it is recommended that one considers not only performance characteristics such as mean bias and standard error, but also the long-term-averaged concentration patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

B, C :

Constants for computingz i

D :

Wind direction (deg)

f :

Coriolis parameter (s−1)

F b :

Buoyancy flux from the stack (m4/s3)

F r :

Residual buoyancy during plume rise (m4/s3)

g :

Acceleration due to gravity (m/s2)

H * :

Stability parameter (m2/s3)

h 3 :

Effective stack height (m)

L :

Obukhov length scale (m)

M :

Month in the year (1–12)

p :

Plume inversion-penetration fraction

R :

Correlation coefficient

R r :

Dimensionless ratio in (8)

t :

Travel time (s)

T a :

Ambient temperature (K)

ΔT :

Temperature jump at inversion heght (K)

T e :

Eulerian timescale of turbulent fluctuations (s)

T l :

Lagragian timescale of turbulent fluctuations (s)

T ly :

Lagrangian timescale of lateral turbulent fluctuations (s)

T lz :

Lagrangian timescale of vertical turbulent fluctuations (s)

u(z) :

Wind speed at heightz (m/s)

u h :

Wind speed at stack height (m/s)

u * :

Friction velocity (m/s)

w * :

Convective velocity scale (m/s)

x :

Distance from the stack (m)

z :

Height (m)

z b :

Bottom of atmospheric layer (m)

z T :

Top of atmospheric layer (m)

z i :

Inversion height; mixing height (m)

z 0 :

Surface roughness length (m)

Δh :

Plume rise (m)

θ:

Potential temperature (K)

θ v :

Virtual potential temperature (K)

κ:

Von Kárman constant

σ v :

Standard deviation of cross-wind speed fluctuations (m/s)

σ v f :

Same; for the turbulent fluctuations (m/s)

σ v s :

Same; for the slow fluctuations (m/s)

σ w :

Standard deviation of vertical wind speed fluctuations (m/s)

σ y :

Horizontal dispersion parameter (m)

σ y f :

Horizontal dispersion parameter — turbulent component (m)

σ y s :

Horizontal dispersion parameter — non-turbulent component (m)

σ z :

Vertical dispersion parameter (m)

References

  • Anfossi, D., Ferrero, E., Brusasca, G., Marzorati, A., and Tinarri, G.: 1993, ‘A Simple Way of Computing Buoyant Plume Rise in Lagrangian Stochastic Dispersion Models’,Atm. Env. 27A, 1443–1451.

    Google Scholar 

  • Baerentsen, J. H. and Berkowicz, R.: 1984, ‘Monte Carlo Simulation of Plume Dispersion in the Convective Boundary Layer’,Atm. Env. 18, 701–712.

    Google Scholar 

  • Berkowicz, R., Olesen, H. R., and Torp U.: 1985, ‘The Danish Gaussian Air Pollution Model, (OML): Description, Test and Sensitivity analysis in View of Regulatory Applications’, in:Preprints of the 15th NATO/CCMS ITM on Air pollution modelling and its applications, April 15–19, 1985, St. Louis, USA.

  • Binkowski, F. S.: 1978, ‘A Simple Semi-Empirical Theory for Turbulence in the Atmospheric Surface Layer’,Atm. Env. 18, 701–712.

    Google Scholar 

  • Briggs, G. A.: 1973, ‘Diffusion Estimates for Small Emissions, in Environmental Research Laboratories, Air Resources Atmosphere Turbulence and Diffusion Laboratory’,1973 Annual Report of the USAEC, Report ATDL-106, Nat. Oceanic and Atm. Administration.

  • Briggs, G. A.: 1984, ‘Plume Rise and Buoyancy Effects’, in: D. Randerson (ed.),Atmospheric Science and power production, DOE/TIC 27601, Dept. of Commerce, Springfield, USA.

    Google Scholar 

  • Briggs, G. A.: 1993, ‘Final Results of the CONDORS Convective Diffusion Experiment’,Boundary-Layer Meteorol. 62, 315–328.

    Google Scholar 

  • Carruthers, D. J., Holroyd, R. J., Hunt, J. C. R., Weng, W. S., Robins, A. G., Apsley, D. D., Thomson, D. J., and Smith, F. B.: (1992), ‘UK Atmospheric Dispersion Modelling System’, in:Proceedings of the 19th International technical meeting of NATO-CCMS on Air Pollution Modelling and its application, 29 September–4 October 1991, Ierapetra, Greece, Plenum Press, New York.

    Google Scholar 

  • DiCristofaro, D. C. and Touma, J. S.: 1992, ‘Description and Sensitivity Analysis of the Shoreline Dispersion Model (SDM)’, in:Proceedings of the 19th International technical meeting of NATOCCMS on Air Pollution Modelling and its application, 29 September–4 October 1991, Ierapetra, Greece, Plenum Press, New York.

    Google Scholar 

  • Draxler, R. R.: 1976, ‘Determination of Atmospheric Diffusion Parameters’,Atm. Env. 19, 939–951.

    Google Scholar 

  • Draxler, R. R.: 1987, ‘Accuracy of Various Diffusion and Stability Schemes over Washington, D.C.’,Atm. Env. 21, 491–499.

    Google Scholar 

  • Driedonks, A. G. M.: 1982, ‘Models and Observations of the Growth of the Atmospheric Boundary Layer’, in:Boundary-Layer Meteorol.,23, 283–306.

  • EPRI, 1983:Plume model validation field measurments — flat terrain site — Kincaid, Illinois. EPRI report RP1616-8.

  • Erbrink, J. J.: 1989, ‘Simple Determination of the Atmospheric Stability Class for Application in Dispersion Modelling, Using Wind Fluctuations’,Kema Scientific & Technical Reports 7, 391–399.

    Google Scholar 

  • Erbrink, J. J.: 1991, ‘A Practical Model for the Calculation of σ y and σ z for Use in an On-Line Gaussian Dispersion Model for Tall Stacks, Based on Wind Fluctuations’,Atm. Env.,25A, 277–283.

    Google Scholar 

  • Erbrink, J. J. and Bange, P.: 1992, ‘Modelling Dispersion and NO Oxidation in Power Plant Plumes’, in:Proceedings of the 19th International technical meeting of NATO-CCMS on Air Pollution Modelling and its application, 29 September–4 October 1991, Ierapetra, Greece Plenum Press, New York.

    Google Scholar 

  • Erbrink, J. J.: 1994a, ‘Plume Rise in Different Atmospheres: A Practical Scheme and Some Comparison with Lidar Measurements’,Atm. Env. 28, 3625–3636.

    Google Scholar 

  • Erbrink, J. J.: 1994b, ‘The Gaussian Model STACKS‘, in: J. C. Cuverlier, JRC (ed.),Proceedings of the ERCOFTAC workshop on ‘Intercomparison of advanced practical short-range atmospheric dispersion models’, Manno, Switzerland, 29 August–3 September 1993.

  • Golder, D.: 1972, ‘Relations Among Stability Parameters in the Surface Layer’,Boundary-Layer Meteorol. 3, 47–58.

    Google Scholar 

  • Gryning, S. E.: 1981,Elevated Source SF 6 Tracer Dispersion Experiments in the Copenhagen Area. Report RISØ-R-446, RISØ-National Laboratory, Roskilde, Denmark.

    Google Scholar 

  • Gryning, S. E., Holtslag, A. A. M., Irwin, J. S., and Sivertsen, B.: 1987, ‘Applied Dispersion Modelling Based on Meteorological Scaling Parameters’,Atm. Env. 21, 79–89.

    Google Scholar 

  • Hanna, S. R.: 1988, ‘Air Quality Model Evaluation and Uncertainty’,JAPCA 38, 406–412.

    Google Scholar 

  • Hanna, S. R.: 1992, ‘Effects of Data Limitations on Hopes for Improved Short Range Atmospheric Dispersion Models’, in:Proceedings of the workshop ‘Objectives for next generation of practical short-range atmospheric dispersion models’. RISØ, Denmark; May, 6–8, 1992; Eds.: H. R. Olesen and T. Mikkelsen), DCAR, Denmark.

    Google Scholar 

  • Hanna, S. R. and Chang, J.: 1993, ‘Hybrid Plume Dispersion Model (HPDM) Improvements and Testing at Three Field Sites’,Atm. Env. 27A, 1491–1508.

    Google Scholar 

  • Haugen, D. A.: (1959), ‘Project Prairie Grass: A Field Program in Diffusion’,Geophysical research papers 59, III, Report AFCRC-TR-58-235, Air Force Cambridge Research Centre.

  • Henn, D. S. and Sykes, R. I.: 1992, ‘Large-Eddy Simulation of Dispersion in the Convective Boundary Layer’,Atm. Env. 26A, 3145–3159.

    Google Scholar 

  • Holtslag, A. A. M.: 1987,Surface Fluxes and Boundary-Layer Scaling. Models and Applications, Scientific report WR-no. 87-2, KNMI, de Bilt.

  • Hurley, P. and Physik, W.: 1993, ‘Lagrangian Particle Modelling of Buoyant Point Sources: Plume Rise and Entrapment Under Convective Conditions’,Atm. Env. 27A, 1579–1584.

    Google Scholar 

  • Irwin, J. S.: 1983, ‘Estimating Plume Dispersion — A Comparison of Several Sigma-Schemes’,J. Clinate Appl. Meteorol. 22, 92–114.

    Google Scholar 

  • Irwin, J. S. and Paumier, J. O.: 1990, ‘Characterizing the Dispersive State of Convective Boundary Layers for Applied Dispersion Modelling’,Boundary-Layer Meteorol. 53, 267–296.

    Google Scholar 

  • Jersey, G. R. L.: 1982,Incorporation of a Simple Evapotranspiration Parameterisation in an Efficient Model of the Atmospheric Boundary Layer, thesis in meteorology, Penn. State university.

  • Kaplan, H. and Dinar, N.: 1992, ‘A Stochastic Model for the Dispersion of a Non-Passive Scalar in a Turbulent Wind Field’,Atm. Env. 26A, 2413–2423.

    Google Scholar 

  • Koracin, D. and Berkowicz, R.: 1987, ‘Nocuturnal Boundary-Layer Height: Observations by Acoustic Sounders and Predictions in Terms of Surface-Layer Parameters’,Boundary-Layer Meteorol. 43, 65–83.

    Google Scholar 

  • Kretzschmar, J. G. and Mertens, I.: 1980, ‘Influence of the Turbulence Typing Schemes upon the Yearly Average Ground-Level-Concentrations Calculated by Means of a Mean Wind Direction Model’,Atm. Env. 14, 947–951.

    Google Scholar 

  • Mason, P.J.: 1992, ‘Large-Eddy Simulation of Atmospheric Dispersion’, in: H. Van Dop and G. Kallos (eds.),Proceedings of the 19th International technical meeting of NATO-CCMS on Air Pollution Modelling and its Application, IX, 17, 29 September–4 October 1991, Ierapetra, Greece.

  • Matamala, L. V.: 1991, ‘Analysis of the Dispersion Characteristics of the Navajo Generating Station Plume Using a Lagrangian Monte-Carlo Model’,Environmental Software 6, 143–150.

    Google Scholar 

  • Nieuwstadt, F. T. M. and Van Dop, H.: 1982,Atmospheric Turbulence and Air Pollution Modelling. Reidel Publishing Company, Boston, MA.

    Google Scholar 

  • Nieuwstadt, F. T. M.: 1992, ‘A Large-Eddy Simulation of a Line Source in a Convective Atmospheric Boundary Layer — Dynamics of a Buoyant Line Source’,Atm. Env. 26A, 497–503.

    Google Scholar 

  • Olesen, H. R. and Brown, R.: 1988,The OML Meteorological preprocessor. RISØ Report MST LUFT-A122, Denmark.

  • Olesen, H. R.: 1994, ‘Pilot Study: Evaluation of the OML model’, in: J. C. Cuverlier, JRC (ed.),Proceedings of the ERCOFTAC workshop on ‘Intercomparison of advanced practical short-range atmospheric dispersion models’ Manno, Switzerland, 29 August–3 September 1993.

  • Panofsky, H. A., Tennekes, H., Lenschow, D. H., and Wyngaard, J. C.: 1977, ‘The Characteristics of Turbulent Velocity Components in the Surface Layer Under Convective Conditions’,Boundary-Layer Meteorol. 11, 355–361.

    Google Scholar 

  • Poli, A. A. and Cirillo, M. C.: 1993, ‘On the Use of the Normalized Mean Square Error in Evaluating Dispersion Model Performance’,Atm. Env. 27A, 2427–2434.

    Google Scholar 

  • Roberts, C. S., Timmis, R. J., Hackman, M. P., and Williams, M. L.: 1992, in:Proceedings of the 19th International technical meeting of NATO-CCMS on Air Pollution Modelling and its application, 29 September–4 October 1991, Ierapetra, Greece. Plenum Press, New York.

    Google Scholar 

  • Sawford, B. L.: 1987, ‘Conditional Concentration Statistics for Surface Plumes in the Atmospheric Boundary Layer’,Boundary-Layer Meteorol. 18, 209–223.

    Google Scholar 

  • Taylor, G. I.: 1921, ‘Diffusion by Continuous Movements’,Proc. London Math Soc. 20, 196–202.

    Google Scholar 

  • Turner, D. B.: 1970,Workbook of atmospheric dispersion estimates. AP-26, US Env. Prot. Agency, Research Triangle Park, NC, 27711.

    Google Scholar 

  • Turner, D. B.: 1985, ‘Proposed Pragmatic Methods for Estimating Plume Rise and Plume Penetration Through Atmospheric Layers’,Atm. Env. 19, 1215–1218.

    Google Scholar 

  • Van Dop, H.: 1992, ‘Buoyant Plume Rise in a Lagrangian Framework’,Atm. Env. 26A, 1335–1346.

    Google Scholar 

  • Van Dop, H., Haan, B. J. de, and Engeldal, C. A.: 1982,The KNMI mesoscale air pollution model, Scientific report WR 82-6. Royal Dutch Met. Inst.

  • Van Duuren, H. and Nieuwstadt, F. T. M.: 1980, ‘Dispersion Experiments from the 213 m High Meteorological Mast at Cabauw in the Netherlands’, in: M. M. Benarie (ed.),Atmospheric Pollution 1980, Proceedings of the 14th international colloquium, Studies in Environmental Science (Paris, May, 5–8, 1980; 8, Amsterdam, Elsevier Science Publishers, 77–90.

    Google Scholar 

  • Van Jaarsveld, J. A. and de Leeuw, F. A. A. M.: 1993, ‘OPS: An Operational Atmospheric Transport Model for Prioritary Substances’,Environmental Software 8, 93–100.

    Google Scholar 

  • Van Ulden, A. P. and Holtslag, A. A. M.: 1985, ‘Estimation of Atmospheric Boundary-Layer Parameters for Diffusion Applications’,J. Climate and Appl. Meteorol. 24, 1196–1207.

    Google Scholar 

  • Venkatram, A.: 1980, ‘Estimating the Monin-Obukhov Length in the Stable Boundary Layer for Dispersion Calculations’, in:Boundary-Layer Meteorol. 19, 481–485.

  • Weil, J. C. and Brower, R. P.: 1984, ‘An Updated Gaussian Plume Model for Tall Stacks’,JAPCA 34, 815–827.

    Google Scholar 

  • Weil, J. C.: 1985, ‘Updating Applied Diffusion Models’,J. Appl. Meteorol. 24, 1111–1130.

    Google Scholar 

  • Weil, J. C., Sykes, S. I., and Venkatram, A.: 1992, ‘Evaluating Air-Quality Models: Review and Outlook’,J. Appl. Meteor. 31, 1121–1145.

    Google Scholar 

  • Willmot, C. J.: 1982, ‘Some Comments on the Evaluation of Model Performane’,Bull. Am. Met. Soc. 63, 1309–1313.

    Google Scholar 

  • Wilson, R. B.: 1993, ‘Review of Development and Application of CRSTER and MPTER Models’,Atm. Env. 27B, 41–57.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erbrink, J.J. Use of boundary-layer meteorological parameters in the Gaussian model ‘STACKS’. Boundary-Layer Meteorol 74, 211–235 (1995). https://doi.org/10.1007/BF00712119

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00712119

Keywords

Navigation