Skip to main content
Log in

Calcium and magnesium binding to thin and thick filaments in skinned muscle fibres: electron probe analysis

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

Electron probe analysis of ultrathin cryosections with high spatial resolution was used to determinein situ the concentrations of Ca2+ and Mg2+ bound in the absence of ATP to myofilaments in the I and A-bands of skinned frog skeletal muscle. At 2.2×10−11 m Ca2+ and 2.7×10−9 m Mg2+, the inexchangeably bound Mg2+ in the I-band was equivalent to the amount of divalent cations known to be inexchangeably bound to F-actin, while the Ca2+ bound to the I-band was not significantly above zero. The bound Mg2+ in the I-band was not exchangeable with Ca2+ even when the skinned fibres were exposed to 10mm Ca2+ solution. These results clearly indicate that Mg2+, rather than Ca2+, is the divalent cation bound to F-actin in the thin filamentsin situ. In the presence of 1mm Mg2+, the exchangeable Ca2+ bound to the I-band was increased as a function of the free Ca2+, while that in the A-band was not significantly changed with [Ca2+] up to 2 × 10−5 m, and increased to approximately 0.8 mol Ca2+ per mol myosin at 10−4 m Ca2+. At a saturating free Ca2+ in Tris-Cl solution, the bound Ca2+ content (2–3 mol Ca2+ per mol troponin) of the nonoverlapping I-band was unexpectedly low; the replacement of Tris with Na+ enhanced Ca2+ binding to the level equivalent to 3–4 mol Ca2+ per mol troponin. The depressant effect of Tris on Ca2+ binding was greater in the absence of Mg2+. High concentrations of Tris also reduced the maximum tension induced by 10−4 m Ca2+ buffered with 10mm EGTA. At 1.3×10−7 m Ca2+, thought to be close to the cytoplasmic free Ca2+ in resting muscle, the I-band bound a significant amount of Ca2+: equivalent to about 1 mol Ca2+ per mol troponin. In rabbit myofibrils there was a significant amount (approximately 1.5 mol/mol myosin) of Ca2+ bound by the A-band at a free Ca2+ of 10−4 m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ALLEN, D. G., BLINKS, J. R. & PRENDERGAST, F. G. (1977) Aequorin luminescence: Relation of light emission to calcium concentration — A calcium-independent component.Science 195, 996–8.

    Google Scholar 

  • ALONSO, G. L., ARRIGO, D. M. & De FERMANI, S. T. (1979) Effect of Tris (hydroxymethyl) aminomethane on isolated sarcoplasmic reticulum vesicles.Archs Biochem. Biophys. 198, 131–6.

    Google Scholar 

  • BÁRÁNY, K., BÁRÁNY, M., GILLIS, J. M. & KUSHMERICK, M. J. (1980) Myosin light chain phosphorylation during the contraction cycle of frog muscle.Fed. Proc. 39, 1547–51.

    Google Scholar 

  • BÁRÁNY, M. & BÁRÁNY, K. (1980) Phosphorylation of the myofibrillar proteins.Ann. Rev. Physiol. 42, 275–92.

    Google Scholar 

  • BÁRÁNY, M., FINKELMAN, F. & THERATTIL-ANTONY, T. (1962) Studies on the bound calcium of actin.Archs Biochem. Biophys. 98, 28–45.

    Google Scholar 

  • BREMEL, R. D. & WEBER, A. (1972) Cooperation within actin filament in vertebrate skeletal muscle.Nature New Biol. 238, 97–101.

    Google Scholar 

  • BRONSTEIN, W. W. & KNULL, H. R. (1981) Interaction of muscle glycolytic enzymes with thin filament proteins.Can. J. Biochem. 59, 494–9.

    Google Scholar 

  • CAMPBELL, A. K., LEA, T. J. & ASHLEY, C. C. (1979) Coelentarate photoproteins. InDetection and Measurement of Free Ca 2+ in Cells (edited by ASHLEY, C. C. and CAMPBELL, A. K.), pp. 13–72. Amsterdam: North Holland.

    Google Scholar 

  • CLARKE, F. M. & MASTERS, C. J. (1976) Interactions between muscle proteins and glycolytic enzymes.Int. J. Biochem. 7, 359–65.

    Google Scholar 

  • COHEN, S. M. & BURT, C. T. (1977)31P nuclear magnetic relaxation studies of phosphocreatine in intact muscle: Determination of intracellular free magnesium.Proc. natn. Acad. Sci. 74, 4271–5.

    Google Scholar 

  • CORAY, A., FRY, C. H., HESS, P., McGUIGAN, J. A. S. & WEINGART, R. (1980) Resting calcium in sheep cardiac tissue and in frog skeletal muscle measured with ion-selective micro-electrodes.J. Physiol., Lond. 305, 60-1P.

    Google Scholar 

  • COX, J. A., COMTE, M. & STEIN, E. A. (1981) Calmodulin-free skeletal muscle troponin C prepared in the absence of urea.Biochem. J. 195, 205–11.

    Google Scholar 

  • DRABIKOWSKI, W. & STRZELECKA-GOLSZEWSKA, H. (1963) The exchange of actin-bound calcium with various bivalent cations.Biochim. biophys. Acta 71, 486–7.

    Google Scholar 

  • EBASHI, S. & ENDO, M. (1968) Calcium ion and muscle contraction.Prog. Biophys. molec. Biol. 18, 123–83.

    Google Scholar 

  • EBASHI, S., KODAMA, A. & EBASHI, F. (1968) Troponin I. Preparation and physiological function.J. Biochem. 64, 465–77.

    Google Scholar 

  • ENDO, M., KITAZAWA, T., IINO, M. & KAKUTA, Y. (1979) Effect of ‘viscosity’ of the medium on mechanical properties of skinned skeletal muscles fibers. InCross-Bridge Mechanism in Muscle Contraction (edited by SUGI, H. and POLLACK, G. H.), pp. 365–376. Tokyo: University of Tokyo Press.

    Google Scholar 

  • ENDO, M. & NAKAJIMA, Y. (1973) Release of calcium induced by ‘depolarization’ of the sarcoplasmic reticulum membrane.Nature New Biol. 246, 216–8.

    Google Scholar 

  • FISCHER, B. E., HARING, U. K., TRIBOLET, R. & SIGEL, H. (1979) Metal ion/buffer interactions. Stability of binary and ternary complexes containing 2-amino-2(hydroxymethyl)-1,3-propanediol (Tris) and adenosine 5′-triphosphate (ATP).Eur. J. Biochem. 94, 523–30.

    Google Scholar 

  • FUCHS, F. (1978) On the relation between filament overlap and the number of calcium-binding sites on glycerinated muscle fibers.Biophys. J. 21, 273–7.

    Google Scholar 

  • FUCHS, F. & BRIGGS, F. N. (1968) The site of calcium binding in relation to the activation of myofibrillar contraction.J. gen. Physiol. 51, 655–76.

    Google Scholar 

  • GILLESPIE, J. S. & McKNIGHT, A. T. (1976) Adverse effects of Tris hydrochloride, a commonly used buffer in physiological media.J. Physiol. Lond. 259, 561–73.

    Google Scholar 

  • GUPTA, R. K. & MOORE, R. D. (1980)31P NMR studies of intracellular free Mg2+ in intact frog skeletal muscle.J. biol. Chem. 255, 3987–93.

    Google Scholar 

  • HALL, T. A. (1971) The microprobe assay of chemical elements. InPhysical Techniques in Biological Research Vol. IA (edited by OSTER, G.), pp. 158–275. New York: Academic Press.

    Google Scholar 

  • HARAFUJI, H. & OGAWA, Y. (1980) Re-examination of the apparent binding constant of ethylene glycol bis (β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid with calcium around neutral pH.J. Biochem. 87, 1305–12.

    Google Scholar 

  • HARRINGTON, W. F., BURKE, M. & BARTON, J. S. (1972) Association of myosin to form contractile systems.Cold Spring Harb. Symp. quant. Biol. 37, 77–85.

    Google Scholar 

  • HELLAM, D. C. & PODOLSKY, R. J. (1969) Force measurements in skinned muscle fibres.J. Physiol. 200, 807–19.

    Google Scholar 

  • HESS, P. & WEINGART , R. (1981) Free magnesium in cardiac and skeletal muscle measured with ion-selective micro-electrodes.J. Physiol., Lond. 318, 14P.

    Google Scholar 

  • HUTCHINSON, T. E. & BOREK, J. R. (1979) Experimental determination of detection limits and calibration constants for energy-dispersive X-ray analysis using thin film frozen hydrated solution.Ultramicroscopy 4, 233–40.

    Google Scholar 

  • KASAI, M. (1969) The divalent cation bound to actin and thin filament.Biochim. biophys. Acta 172, 171–3.

    Google Scholar 

  • KASAI, M, ASAKURA, S. & OOSAWA, F. (1962) The G-F equilibrium in actin solutions under various conditions.Biochim. biophys. Acta 57, 13–21.

    Google Scholar 

  • KASAI, M. & OOSAWA, F. (1963) Removal of nucleotides from F-actin.Biochim. biophys. Acta 75, 223–33.

    Google Scholar 

  • KITAZAWA, T., SHUMAN, H. & SOMLYO, A. P. (1981) Myofilament-bound Mg and Ca: Electron proble analysis of skinned muscle fibers.Biophys. J. 33, 26a (abstract).

    Google Scholar 

  • MARTONOSI, A., GOUVEA, M. A. & GERGELY, J. (1960) Studies on actin.J. biol. Chem. 235, 1700–9.

    Google Scholar 

  • MARUYAMA, K., MATSUBARA, S., NATORI, R., NONOMURA, Y., KIMURA, S., OHASHI, K., MURAKAMI, F., HANDA, S. & EGUCHI, G. (1977) Connectin, an elastic protein of muscle. Characterization and function.J. Biochem. 82, 317–37.

    Google Scholar 

  • MORIMOTO, K. & HARRINGTON, W. F. (1974) Substructure of the thick filament of vertebrate striated muscle.J. molec. Biol. 83, 83–97.

    Google Scholar 

  • MOSS, R. L., GIULIAN, G. G. & GREASER, M. L. (1982) The mechanical effects of myosin LC2 removal from rabbit skinned skeletal muscle fibers.Biophys. J. 37, 365a (abstract).

  • OGILVIE, J. W. & WHITAKER, S. C. (1976) Reaction of Tris with aldehydes. Effect of Tris on reactions catalyzed by homoserine dehydrogenase and glyceraldehyde-3-phosphate dehydrogenase.Biochim. biophys. Acta 445, 525–36.

    Google Scholar 

  • OOSAWA, F., ASAKURA, S., ASAI, H., KASAI, M., KOBAYASHI, S., MIHASHI, K., OOI, T., TANIGUCHI, M. & NAKANO, E. (1964) Structure and function of actin polymers. InBiochemistry of Muscular Contraction (edited by GERGELY, J.), pp. 158–172. Boston: Little Brown.

    Google Scholar 

  • PERRY, S. V. (1979) The regulation of contractile activity in muscle.Twelfth Ciba Medal Lecture 7, 593–617.

    Google Scholar 

  • PETTE, D. & BRANDON, H. (1962) Intracellular localization of glycolytic enzymes in cross-striated muscle ofLocusta migratoria.Biochem. biophys. Res. Commun. 9, 367–70.

    Google Scholar 

  • POTTER, J. D. & GERGELY, J. (1975) The calcium and magnesium binding sites on troponin and their role in the regulation of myofibrillar adenosine triphosphate.J. biol. Chem. 250, 4628–33.

    Google Scholar 

  • SHUMAN, H., SOMLYO, A. V. & SOMLYO, A. P. (1976) Quantitative electron probe microanalysis of biological thin sections: Methods and validity.Ultramicroscopy 1, 317–39.

    Google Scholar 

  • SILLEN, L. G. & MARTELL, A. E. (1964)Stability Constants of Metal Ion Complexes. Special Publication No. 17. London: The Chemical Society.

    Google Scholar 

  • SOMLYO, A. P., SOMLYO, A. V. & SHUMAN, H. (1979) Electron probe analysis of vascular smooth muscle. Composition of mitochondria, nuclei and cytoplasm.J. Cell. Biol. 81, 316–35.

    Google Scholar 

  • SOMLYO, A. V., GONZALEZ-SERRATOS, H., SHUMAN, H., McCLELLAN, G. & SOMLYO, A. P. (1981) Calcium release and ionic changes in the sarcoplasmic reticulum of tetanized muscle: An electron-probe study.J. Cell Biol. 90, 577–94.

    Google Scholar 

  • SOMLYO, A. V., SHUMAN, H. & SOMLYO, A. P. (1977) Elemental distribution in striated muscle and the effects of hypertonicity: Electron probe analysis of cryosections.J. Cell Biol. 74, 828–57.

    Google Scholar 

  • SPURR, A. R. (1969) A low-viscosity epoxy resin embedding medium for electron microscopy.J. Ultrastruct. Res. 26, 31–43.

    Google Scholar 

  • STULL, J. T. & HIGH, C. W. (1977) Phosphorylation of skeletal muscle contractile proteinsin vivo.Biochem. biophys. Res. Commun. 77, 1078–83.

    Google Scholar 

  • THORENS, S. & ENDO, M. (1975) Calcium-induced calcium release and ‘depolarization’ induced calcium release: Their physiological significance.Proc. Japan Acad. 51, 473–8.

    Google Scholar 

  • TSIEN, R. Y. & RINK, T. J. (1980) Neutral carrier ion-selective microelectrodes for measurement of intracellular free calcium.Biochim. biophys. Acta 599, 623–38.

    Google Scholar 

  • VAN EERD, J.-P., CAPONY, J.-P., FERRAZ, C. & PECHERE, J.-F. (1978) The amino-acid sequence of troponin C from frog skeletal muscle.Eur. J. Biochem. 91, 231–42.

    Google Scholar 

  • WEBER, A., HERZ, R. & REISS, I. (1969) The role of magnesium in the relaxation of myofibrils.Biochemistry 8, 2266–71.

    Google Scholar 

  • WIKMAN-COFFELT, J. & SRIVASTAVA, S. (1979) Studies on Ca2+-Mg2+ binding sites of frog skeletal muscle myosin.J. Biochem. 86, 829–32.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitazawa, T., Shuman, H. & Somlyo, A.P. Calcium and magnesium binding to thin and thick filaments in skinned muscle fibres: electron probe analysis. J Muscle Res Cell Motil 3, 437–454 (1982). https://doi.org/10.1007/BF00712093

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00712093

Keywords

Navigation