Skip to main content
Log in

Studies on sarcoplasmic reticulum from slow-twitch muscle

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

Vesicles were isolated from membranes of the sarcoplasmic reticulum (SR) of rabbit slow-twitch muscle by differential and sucrose density gradient centrifugation after homogenization. In some experiments, the vesicles were further fractionated by loading them with calcium oxalate followed by centrifugation in a sucrose density gradient.

Protein composition of the isolated vesicles was complex and differed from the protein composition of fast-twitch muscle vesicles. However, other protein components, which were also present in fast-twitch muscle SR vesicles, have been identified: Ca2+-dependent ATPase, calsequestrin, 160 000 molecular weight glycoprotein and 53 000 molecular weight glycoprotein. The amount of the Ca2+-dependent ATPase and calsequestrin was several times lower in the slow-twitch muscle SR vesicles. This has been observed in both the original and the loaded vesicles.

The slow-twitch muscle SR vesicles showed active calcium transport, Ca2+-dependent ATPase activity, and the formation of the phosphorylated intermediate under conditions similar to those established for fast-twitch muscle SR. However, these activities, when expressed per mg of total protein, were several times lower than the analogous activities in the SR vesicles isolated from fast-twitch skeletal muscle. When the same enzyme activities were expressed per mg of the 105 000 molecular weight ATPase, the values obtained were very similar in both kinds of vesicles.

The results indicate that the slow rate of calcium transport, found in slow-twitch muscle SR vesicles, may be related to a low content of the calcium-transporting ATPase in the membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Acid phosphatase:

Orthophosphoric monoester phosphohydrolase (EC 3.1.3.2)

ATP:

Adenosine triphosphate

ATPase:

Adenosine triphosphatase (EC 3.6.1.3)

DFP:

Di-isopropylfluorophosphate

EGTA:

Ethylene glycol bis (β-aminoethyl ether)-N′,N′-tetraacetic acid

ENDO H:

ENDO-B-N-acetylglucosaminidase H (Streptomyces griseus) (Health Research, Inc., Albany, New York, U.S.A.)

Glucose-6-phosphatase:

d-Glucose-6-phosphate phosphorylase (EC 3.1.3.9)

5′-Nucleotidase:

5′-Ribonucleotide phosphohydrolase (EC 3.1.3.5)

PMSF:

Phenylmethyl sulphonylfluoride

Phosphorylaseb :

Glycogen phosphorylaseb (EC 2.4.1.1)

SDS:

Sodium dodecyl sulphate

Stains-all:

[1-Ethyl-2-[3-(1-ethylnaphthol[1,2d]thiazolin-2-ylidene)-2-methylpropenyl]-naphthol[1,2d]-thiazolium bromide (Kodak Organic Chemicals)

Succinate dehydrogenase:

succinate cytochromec reductase (EC 1.3.3.99.1)

References

  • ARONSON, N. N. & TOUSTER, O. (1974) Isolation of rat liver plasma membrane fragments in isotonic sucrose. InMethods in Enzymology (edited by FLEISCHER, S. and PACKER, L.), Vol. 31, pp. 92–94, New York: Academic Press.

    Google Scholar 

  • BLIGH, E. G. & DYER, W. J. (1959) A rapid method of total lipid extraction and purification.Can. J. Biochem. Physiol. 37, 911–9.

    Google Scholar 

  • BRANTON, P. E., SASSAM, N. J., POWNEY, J. F., YEE, S. I., GRAHAM, F. L., MAK, S. & BAYLEY, S. T. (1981) Protein kinase activity immunoprecipitated from adenovirus infected cells by sera from tumor-bearing hamster.J. Virol. 37, 601–8.

    Google Scholar 

  • BRAY, B. F. & RAYNS, D. G. (1976) A comparative freeze-etch study of the sarcoplasmic reticulum of avian fast and slow muscle fibers.J. Ultrastruct. Res. 57, 251–9.

    Google Scholar 

  • CAMPBELL, K. P., JORGENSEN, A. O. & MACLENNAN, D. H. (1982) Identification of calsequestrin and the intrinsic glycoprotein in canine cardiac sarcoplasmic reticulum.J. biol. Chem. (in press).

  • CAMPBELL, K. P. & MACLENNAN, D. H. (1981) Purification and characterization of the 53 000-dalton glycoprotein from sarcoplasmic reticulum.J. biol. Chem. 256, 4624–32.

    Google Scholar 

  • CLOSE, R. J. (1972) Dynamic properties of mammalian skeletal muscle.Physiol. Rev. 52, 129–98.

    Google Scholar 

  • CORI, G. T., ILLINGWORTH, B. & KELLER, P. J. (1955) Muscle phosphorylase. InMethods in Enzymology (edited by COLLOWICK, S. P. and KAPLAN, N. O.), Vol. 1, pp. 200–202. New York: Academic Press.

    Google Scholar 

  • COTMAN, C. W. & MATTHEWS, D. A. (1971) Synaptic plasma membranes from rat brain synaptosomes: Isolation and partial characterisation.Biochim. biophys. Acta 249, 380–94.

    Google Scholar 

  • DEAMER, D. W. & BASKIN, R. Y. (1969) Ultrastructure of sarcoplasmic reticulum.J. Cell Biol. 42, 296–307.

    Google Scholar 

  • DE FOOR, P. H., LEVITSKY, D., BIRYNKOVA, T. & FLEISCHER, S. (1980) Immunological disimilarity of the calcium pump protein of skeletal and cardiac muscle sarcoplasmic reticulum.Archs Biochim. Biophys. 200, 196–205.

    Google Scholar 

  • DHOOT, G. K. & PERRY, S. V. (1979) Distribution of polymorphic forms of troponin components and tropomyosin in skeletal muscle.Nature 278, 714–8.

    Google Scholar 

  • EBASHI, S., ENDO, M. & OHTSUKI, J. (1969) Control of muscle contraction.Q. Rev. Biophys. 2, 351–84.

    Google Scholar 

  • EISENBERG, B. R., KUDA, A. M. & PETER, J. B. (1974) Stereological analysis of mammalian skeletal muscle. I. Soleus muscle of the adult guinea pig.J. Cell Biol. 60, 732–54.

    Google Scholar 

  • EISENBERG, B. R. & KUDA, A. M. (1975) Stereological analysis of mammalian skeletal muscle. II. White vastus muscle of the adult guinea pig.J. Ultrastruct. Res. 51, 176–87.

    Google Scholar 

  • EISENBERG, B. R. & KUDA, A. M. (1976) Discrimination between fiber population in mammalian skeletal muscle by using ultrastructural parameters.J. Ultrastruct. Res. 54, 76–88.

    Google Scholar 

  • FIEHN, W. & PETER, J. B. (1971) Properties of the fragmented sarcoplasmic reticulum from fast twitch and slow twitch muscle.J. clin. Invest. 50, 570–3.

    Google Scholar 

  • FISKE, C. H. & SUBBAROW, Y. (1925) The colorimetric determination of phosphorus.J. biol. Chem. 66, 375–400.

    Google Scholar 

  • FLEISCHER, S. & FLEISCHER, B. (1967) Assay of DPNH or succinate-cytochromec reductase activity. InMethods in Enzymology (edited by ESTABROOK, R. W. and PULLMAN, M. E.), Vol. 10, pp. 427–428. New York: Academic Press.

    Google Scholar 

  • GAUTHIER, G. & LOWEY, S. (1979) Distribution of myosin isoenzymes among skeletal muscle fiber types.J. Cell Biol. 81, 10–25.

    Google Scholar 

  • GOULD, J. M., CATHER, R. & WINGET, G. D. (1972) Advantage of the use of Cerenkov counting for determination of32P in photophosphorylation.Analyt. Biochem. 50, 540–8.

    Google Scholar 

  • HARIGAYA, S., OGAWA, Y. & SUGITA, M. (1968) Calcium binding activity of microsomal fraction of rabbit red muscle.J. Biochem. 63, 324–31.

    Google Scholar 

  • HASSELBACH, W. (1964) Relaxing factor and the relaxation of muscle.Prog. Biophys. molec. Biol. 14, 167–222.

    Google Scholar 

  • HEILMANN, C., BRDICZKA, D., NICKEL, E. & PETTE, D. (1977) ATPase activity, Ca2+ transport and phosphoprotein formation in sarcoplasmic reticulum subfractions of fast and slow rabbit muscle.Eur. J. Biochem. 81, 211–22.

    Google Scholar 

  • HEILMANN, C. & PETTE, D. (1979) Molecular transformations in sarcoplasmic reticulum of fast-twitch muscle by electro-stimulation.Eur. J. Biochem. 93, 437–46.

    Google Scholar 

  • JORGENSEN, A. O., SHEN, A. C. Y., MACLENNAN, D. H. & TOKUYASU, K. T. (1982) Ultrastructural localization of the Ca2+, Mg2+-dependent ATPase of sarcoplasmic reticulum in rat skeletal muscle by immunoferritin labelling of ultra thin frozen sections.J. Cell. Biol. 92, 409–16.

    Google Scholar 

  • KING, L. E., JR & MORRISON, M. (1976) The visualization of human erythrocyte membrane proteins and glycoproteins in SDS polyacrylamide gels employing a single staining procedure.Analyt. Biochim. 71, 223–30.

    Google Scholar 

  • KOSK-KOSICKA, D. & SARZALA, M. G. (1982) Sarcolemma from rabbit skeletal muscle: Developmental studies.Devl. Biol. (in press).

  • LAEMMLI, U. K. (1970) Cleavage of structural proteins during assembly of the head of bacteriophage T4.Nature 227, 680–5.

    Google Scholar 

  • LAU, Y. H., CASWELL, A. H., BRUNSCHWIG, J. P., BAERWALD, R. J. & GARCIA, M. (1979) Lipid analysis and freeze-fracture studies on isolated transverse tubules and sarcoplasmic reticulum subfractions of skeletal muscle.J. biol. Chem. 254, 540–6.

    Google Scholar 

  • LE PEUCH, CH. J., HAIECH, J. & DEMAILLE, J. G. (1979) Converted regulation of cardiac sarcoplasmic reticulum calcium transport by cyclic adenosine monophosphate dependent and calcium-calmodulin-dependent phosphorylations.Biochemistry 18, 5150–7.

    Google Scholar 

  • LOWRY, O. Y., ROSENBROUGH, J. J., FARR, A. L. & RANDALL, R. J. (1951) Protein measurement with the Folin phenol reagents.J. biol. Chem. 193, 265–75.

    Google Scholar 

  • LUFF, A. R. & ATWOOD, H. R. (1971) Changes in the sarcoplasmic reticulum and transverse tubular system of fast and slow skeletal muscle of the mouse during postnatal development.J. Cell Biol. 51, 369–83.

    Google Scholar 

  • MACLENNAN, D. H. & WONG, P. T. S. (1971) Isolation of calcium sequestering protein from sarcoplasmic reticulum.Proc. natn. Acad. Sci., U.S.A. 68, 1231–5.

    Google Scholar 

  • MARGRETH, A., SALVIATI, G., DI MAURO, S. & TURATI, G. (1972) Early biochemical consequences of denervation in fast and slow skeletal muscle and their relationship to neural control over muscle differentiation.Biochem. J. 126, 1009–110.

    Google Scholar 

  • MARTONOSI, A. (1969) Sarcoplasmic reticulum. Properties of phosphoprotein intermediate implicated in calcium transport.J. biol. Chem. 244, 613–20.

    Google Scholar 

  • MARTONOSI, A. & FERETOS, R. (1964) The uptake of Ca2+ by sarcoplasmic reticulum fragments.J. biol. Chem. 239, 648–57.

    Google Scholar 

  • MICHALAK, M., CAMPBELL, K. P. & MACLENNAN, D. H. (1980) Localization of the high affinity calcium binding protein and intrinsic glycoprotein in sarcoplasmic reticulum membranes.J. biol. Chem. 255, 1317–26.

    Google Scholar 

  • MOOR, H. & MÜHLETHALER, K. (1963) Fine structure in frozen-etched yeast cells.J. Cell Biol. 17, 609–28.

    Google Scholar 

  • MORRISON, W. R. & SMITH, L. M. (1964) Preparation of fatty acid methyl esters and dimethylacetals from lipids by boron fluoride-methanol.J. Lipid Res. 5, 600–8.

    Google Scholar 

  • ROSE, H. K. & OKLANDER, M. (1965) Improved procedure for the extraction of lipids from human erythrocytes.J. Lipid Res. 6, 428–31.

    Google Scholar 

  • SARZALA, M. G., PILARSKA, M., ZUBRZYCKA, E. & MICHALAK, M. (1975) Changes in structure, composition, and function of sarcoplasmic reticulum membrane during development.Eur. J. Biochem. 57, 25–34.

    Google Scholar 

  • SEIDEL, J. C. (1967) Studies on myosin from red and white skeletal muscle of the rabbit.J. biol. Chem. 242, 5623–9.

    Google Scholar 

  • SRETER, F. A. (1964) Comparative studies on white and red muscle fraction.Fed. Proc. 23, 930–2.

    Google Scholar 

  • SRETER, F. A. (1969) Temperature, pH, and seasonal dependence of Ca2+-uptake and ATPase activity of white and red muscle microsomes.Archs Biochem. Biophys. 134, 25–33.

    Google Scholar 

  • SRETER, F. A. & GERGELY, J. (1964) Comparative studies of the Mg2+-activated ATPase activity and Ca2+-uptake of fractions of white and red muscle homogenates.Biochem. biophys. Res. Commun. 16, 438–43.

    Google Scholar 

  • STEPHENSON, D. G. & WILLIAMS, D. A. (1981) Calcium-activated force responses in fast and slow-twitch skinned muscle fibres of the rat at different temperatures.J. Physiol. 317, 281–302.

    Google Scholar 

  • WEBER, K. & OSBORN, M. (1979) The reliability of molecular weight determination by dodecyl sulfate-polyacrylamide gel electrophoresis.J. biol. Chem. 244, 4406–12.

    Google Scholar 

  • ZUBRZYCKA, E., MICHALAK, M., KOSK-KOSICKA, B. & SARZALA, M. G. (1979) Properties of microsomal subfractions isolated from developing rabbit skeletal muscle.Eur. J. Biochem. 93, 113–21.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zubrzycka-Gaarn, E., Korczak, B., Osinska, H. et al. Studies on sarcoplasmic reticulum from slow-twitch muscle. J Muscle Res Cell Motil 3, 191–212 (1982). https://doi.org/10.1007/BF00711942

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00711942

Keywords

Navigation