Journal of Muscle Research & Cell Motility

, Volume 1, Issue 3, pp 279–303 | Cite as

Sinusoidal analysis: a high resolution method for correlating biochemical reactions with physiological processes in activated skeletal muscles of rabbit, frog and crayfish

  • Masataka Kawai
  • Philip W. Brandt


A high resolution method for determining the complex stiffness of single muscle fibres is described. In this method the length of the fibre is oscillated sinusoidally, and the resulting force amplitude and phase shift are observed and interpreted in terms of chemo-mechanical energy transduction. In activated, fast skeletal muscles of rabbit (psoas), frog (semitendinosus) and crayfish (walking leg flexor), we resolved at least three exponential rate processes. We named these (A), (B), (C) in order of slow to fast. These processes should reflect ATP hydrolysis and concomitant energy transduction since they are absent in muscles that are relaxed, in rigor or fixed. The great similarities in the complex stiffness data from different muscles suggests that there is a common mechanism of chemo-mechanical energy transduction across a broad phylogenetic range.


Skeletal Muscle Phase Shift Rate Process Physiological Process Common Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ABBOTT, R. H. (1972) Comments on the mechanism of force generation in striated muscles.Nature New Biol. 239, 183–6.Google Scholar
  2. ABBOTT, R. H. (1973a) An interpretation of the effects of fiber length and calcium on the mechanical properties of insect flight muscle.Cold Spring Harb. Symp. quant. Biol. 37, 647–54.Google Scholar
  3. ABBOTT, R. H. (1973b) The effects of fibre length and calcium ion concentration on the dynamic response of glycerol extracted insect fibrillar muscle.J. Physiol. 231, 195–208.Google Scholar
  4. ABBOTT, R. H. & STEIGER, G. J. (1977) Temperature and amplitude dependence of tension transients in glycerinated skeletal and insect fibrillar muscle.J. Physiol. 266, 13–42.Google Scholar
  5. AMEMIYA, Y., SUGI, H. & HASHIZUME H. (1979) X-ray diffraction studies on the dynamic properties of cross-bridges in skeletal muscle. InCross-bridge Mechanism in Muscle Contraction (edited by SUGI, H. and POLLACK, G. J.), pp. 425–443. Tokyo: University of Tokyo Press.Google Scholar
  6. ARMSTRONG, C. F., HUXLEY, A. F. & JULIAN, F. J. (1966) Oscillatory responses in frog skeletal muscle fibres.J. Physiol. 186, 26P-27P (abstract).Google Scholar
  7. BENDAT, J. S. & PIERSOL, A. G. (1971)Random Data: Analysis and Measurement Procedures. p. 229. New York: Wiley.Google Scholar
  8. BRANDT, P. W., CAPPELL, E. & JEWELL, B. R. (1976) A robust transducer suitable for measuring forces of 1 µN.J. Physiol. 258, 43–44P (abstract).Google Scholar
  9. BUCHTHAL, F. & KAISER, E. (1951) The rheology of cross striated muscle fibre with particular reference to isotonic conditions.Dan. Biol. Medd. 21, 1–318.Google Scholar
  10. CIVAN, M. M. & PODOLSKY, R. J. (1966) Contraction kinetics of striated muscle fibres following quick change in load.J. Physiol. 184, 511–34.Google Scholar
  11. EASTWOOD, A. B., WOOD, D. S., BOCK, K. L. & SORENSON, M. M. (1979) Chemically skinned mammalian skeletal muscle. I. The structure of skinned rabbit psoas.Tiss. Cell 11, 553–66.Google Scholar
  12. EDMAN, K. A. P., ELZINGA, G. & NOBLE, M. I. M. (1976) Force enhancement induced by stretch of contracting single isolated muscle fibres of frog.J. Physiol. 258, 95–6P (abstract).Google Scholar
  13. FENN, F. O. (1923) A quantitative comparison between the energy liberated and the work performed by the isolated sartorius muscle of the frog.J. Physiol. 58, 175–203.Google Scholar
  14. FORD, L. E., HUXLEY, A. F. & SIMMONS, R. M. (1977) Tension responses to sudden length change in stimulated frog muscle fibres near slack length.J. Physiol. 269, 441–515.Google Scholar
  15. GASSER, H. S. & HILL, A. V. (1924) The dynamics of muscular contraction.Proc. Roy. Soc. 96, 398–437.Google Scholar
  16. GIRARDIER, L., REUBEN, J. P., BRANDT, P. W. & GRUNDFEST, H. (1963) Evidence for anion-permselective membrane in crayfish muscle fibers and its possible role in excitation-contraction coupling.J. gen. Physiol. 47, 189–214.Google Scholar
  17. HEINL, P., KUHN, H. J. & RÜEGG, J. C. (1974) Tension responses to quick length changes of glycerinated skeletal muscle fibers from the frog and tortoise.J. Physiol. 237, 243–58.Google Scholar
  18. HILL, A. V. (1953) The mechanics of active muscle.Proc. Roy. Soc. 141, 104–17.Google Scholar
  19. HILL, L. (1977) A-band length, striation spacing and tension change on stretch of active muscle.J. Physiol. 266, 677–85.Google Scholar
  20. HILL, T. L. (1974) Theoretical formalism for the sliding filament model of contraction of striated muscle. Part I.Prog. Biosphys. molec. Biol. 28, 267–340.Google Scholar
  21. HILL, T. L., EISENBERG, E., CHEN, Y-D. & PODOLSKY, R. J., (1975) Some self-consistent two-state sliding filament models of muscle contraction.Biophys. J. 15, 335–72.Google Scholar
  22. HUXLEY, A. F. (1957) Muscle structure and theories of contraction.Prog. Biophys. 7, 255–318.Google Scholar
  23. HUXLEY, A. F. (1974) Muscular contraction.J. Physiol. 243, 1–43.Google Scholar
  24. HUXLEY, A. F. & SIMMONS, R. M. (1971) Proposed mechanism of force generation in striated muscle.Nature 233, 533–8.Google Scholar
  25. HUXLEY, A. F. & SIMMONS, R. M. (1973) Mechanical transients and the origin of muscular force.Cold Spring Harb. Symp. quant. Biol. 37, 669–80.Google Scholar
  26. JULIAN, F. J. (1969) Activation in a skeletal muscle contraction model with a modification for insect fibrillar muscle.Biophys. J. 9, 547–70.Google Scholar
  27. JULIAN, F. J., SOLLINS, K. R. & SOLLINS, M. R. (1974) A model for the transient and steady-state mechanical behavior of contracting muscle.Biophys. J. 14, 546–62.Google Scholar
  28. KAWAI, M. (1978) Head rotation or dissociation? A study of exponential rate processes in chemically skinned rabbit muscle fibers when MgATP concentration is changed.Biophys. J. 22, 97–103.Google Scholar
  29. KAWAI, M. (1979) Effect of MgATP on cross-bridge kinetics in chemically skinned rabbit psoas fibers as measured by sinusoidal analysis technique. InCross-bridge Mechanism in Muscle Contraction (edited by SUGI, H. and POLLACK, G. H.), pp. 149–169. Tokyo: University of Tokyo Press.Google Scholar
  30. KAWAI, M. & BRANDT, P. W. (1975) Complex stiffness of activated single crayfish muscle fibers.Biophys. J. 15, 154a (abstract).Google Scholar
  31. KAWAI, M. & BRANDT, P. W. (1976) Two rigor states in skinned crayfish single muscle fibers.J. gen. Physiol. 68, 267–80.Google Scholar
  32. KAWAI, M. & BRANDT, P. W. (1979) Effect of ATP buffer concentration on the mechanical rate constants in chemically skinned rabbit psoas fibers.Biophys. J. 25, 270a (abstract).Google Scholar
  33. KAWAI, M. & ORENTLICHER, M. (1976) Effect of inorganic phosphate (Pi), substrate (MgATP), and excess ATP on complex stiffness of skinned crayfish muscle fibers and glycerinated rabbit psoas muscle bundles.Biophys. J. 16, 152a (abstract).Google Scholar
  34. KAWAI, M., BRANDT, P. W. & ORENTLICHER, M. (1977) Dependence of energy transduction in intact skeletal muscles on the time in tension.Biophys. J. 18, 161–72.Google Scholar
  35. LYMN, R. W. & TAYLOR, E. W. (1971) The mechnism of adenosine triphosphate hydrolysis by actomyosin.Biochemistry 10, 4617–24.Google Scholar
  36. MACHIN, K. E. (1964) Feedback theory and its application to biological systems.Symp. Soc. exp. Biol. 18, 421–45.Google Scholar
  37. MACHIN, K. E. & PRINGLE, J. W. S. (1959) The physiology of insect flight muscle. II. The mechanical properties of a beetle flight muscle.Proc. Roy. Soc. 151, 204–25.Google Scholar
  38. PODOLSKY, R. J. (1960) Kinetics of muscular contraction: the approach to the steady state.Nature 188, 666–8.Google Scholar
  39. PODOLSKY, R. J. & NOLAN, A. C. (1973) Muscle contraction transients, cross-bridge kinetics, and the Fenn effect.Cold Spring Harb. Symp. quant. Biol. 37, 661–8.Google Scholar
  40. PODOLSKY, R. J., GULATI, J. & NOLAN, A. C. (1974) Contraction transients of skinned muscle fibers.Proc. natn. Acad. Sci. 71, 1516–9.Google Scholar
  41. PRINGLE, J. W. S. (1967) The contractile mechanism of insect fibrillar muscle.Prog. Biophys. molec. Biol. 17, 1–60.Google Scholar
  42. PRINGLE, F. R. S. (1978) Stretch activation of muscle: function and mechanism.Proc. Roy. Soc. Lond. 201, 107–30.Google Scholar
  43. PYBUS, J. & TREGEAR, R. T. (1975) The relationship of adenosine triphosphatase activity to tension and power output of insect flight muscle.J. Physiol. 247, 71–89.Google Scholar
  44. RACK, P. M. H. (1966) The behavior of a mammalian muscle during sinusoidal stretching.J. Physiol. 183, 1–14.Google Scholar
  45. REUBEN, J. P., BRANDT, P. W. & GRUNDFEST, H. (1967) Tension evoked in skinned crayfish muscle fibers by anions, pH, and drugs.J. gen. Physiol. 50, 2501 (abstract).Google Scholar
  46. REUBEN, J. P., BRANDT, P. W., BERMAN, M. & GRUNDFEST, H. (1971) Regulation of tension in the skinned crayfish muscle fiber.J. gen. Physiol. 57, 385–407.Google Scholar
  47. REUBEN, J. P., WOOD, D. S. & EASTWOOD, A. B. (1977) Adaptation of single fiber techniques for the study of human muscle. InPathogenesis of Human Muscular Dystrophies (edited by RAWLAND, L. P.), pp. 259–269. Amsterdam: Excerpta Medica.Google Scholar
  48. RÜEGG, J. C. & TREGEAR, R. T. (1966) Mechanical factors affecting the ATPase activity of glycerol-extracted fibres of insect fibrillar flight muscle.Proc. Roy. Soc. 165, 497–512.Google Scholar
  49. SAEKI, Y., SAGAWA, K. & SUGA, H. (1978) Dynamic stiffness of cat heart muscle in Ba2+-induced contracture.Circulation Res. 42, 324–33.Google Scholar
  50. STEIGER, G. J. (1971) Stretch activation and myogenic oscillation of isolated contractile structures of heart muscle.Pflügers Arch. Eur. J. Physiol. 330, 347–61.Google Scholar
  51. STEIGER, G. J. & RÜEGG, J. C. (1969) Energetics and ‘efficiency’ in the isolated contractile machinery of an insect fibrillar muscle at various frequencies of oscillation.Pflügers Arch. Eur. J. Physiol. 307, 1–21.Google Scholar
  52. STEIN, L. A., SCHWARZ, R. P., CHOCK, P. B. & EISENBERG, E. (1979) Mechanism of actomyosin adenosine triphosphatase. Evidence that adenosine 5′-triphosphate hydrolysis can occur without dissociation of the actomyosin complex.Biochemistry 18, 3895–909.Google Scholar
  53. SUGI, H. (1972) Tension changes during and after stretch in frog muscle fibres.J. Physiol., Lond. 225, 237–53.Google Scholar
  54. SUGI, H. (1979) The origin of the series elasticity in striated muscle fibers. InCross-bridge Mechanism in Muscle Contraction (edited by SUGI, H. and POLLACK, G. H.), pp. 85–102. Tokyo: University of Tokyo Press.Google Scholar
  55. SUGI, H. & TAMEYASU, T. (1979) The origin of the instantaneous elasticity in single frog muscle fibers.Experimentia 35, 227–8.Google Scholar
  56. THORSON, J. W. & WHITE, D. C. S. (1969) Distributed representations for actomyosin interaction in the oscillatory contraction of muscle.Biophys. J. 9, 360–90.Google Scholar
  57. TRENTHAM, D. R., ECCLESTON, J. F. & BAGSHAW, C. R. (1976) Kinetic analysis of ATPase mechanisms.Q. Rev. Biophys. 9, 217–81.Google Scholar
  58. WHITE, D. C. S. & THORSON, J. (1972) Phosphate starvation and the nonlinear dynamics of insect fibrillar flight muscle.J. gen. Physiol. 60, 307–36.Google Scholar
  59. WHITE, D. C. S. & THORSON, J. (1973) The kinetics of muscle contraction.Prog. Biosphys. molec. Biol. 27, 173–255.Google Scholar
  60. WOOD, D. S., ZOLLMAN, J., REUBEN, J. P. & BRANDT, P. W. (1975) Human skeletal muscle: properties of the ‘chemically skinned’ fiber.Science 197, 1075–6.Google Scholar

Copyright information

© Chapman and Hall Ltd 1980

Authors and Affiliations

  • Masataka Kawai
    • 1
  • Philip W. Brandt
    • 1
  1. 1.Muscle Physiology Division, Departments of Neurology and AnatomyColumbia UniversityNew YorkUSA

Personalised recommendations