Skip to main content

Advertisement

Log in

Abnormalities of biogenic amine metabolism

  • Published:
Journal of Inherited Metabolic Disease

Summary

The term biogenic amine is an umbrella term that encompasses all amines with an origin in biological processes. This review will be restricted to the biogenic amine abnormalities that affect the metabolism of serotonin and the catecholamines. The synthesis and catabolism of these neurotransmitters are outlined, and a summary is given of the neurological details, biochemical features, and treatment of the inborn errors that primarily affect their metabolism. An idea is also developed that proposes that abnormalities of biogenic amine metabolism are far more common than is currently considered, and that the search for these problems may be appropriate in any neonate or infant who presents with neurological problems of unknown origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arai N, Narisawa K, Hayakawa H, Tada K (1982) Hyperphenylalaninemia due to dihydropteridine reductase deficiency: diagnosis by enzyme assays on dried blood spots.Pediatrics 70: 426–430.

    Google Scholar 

  • Bartholomé K (1974) A new molecular defect in phenylketonuria.Lancet 2: 1580.

    Google Scholar 

  • Biaggioni I, Goldstein DS, Atkinson T, Robertson D (1990) Dopamine beta-hydroxylase deficiency in humans.Neurology 40: 370–373.

    Google Scholar 

  • Blaskovics M, Giudici TA (1988) A new variant of biopterin deficiency.N Engl J Med 319: 1611–1612.

    Google Scholar 

  • Clayton PT, Smith I, Harding B, Hyland K, Leonard JV, Leeming RJ (1986) Subacute combined degeneration of the cord, dementia and parkinsonism due to an inborn error of folate metabolism.J Neurol Neurosurg Psychiatr 49: 920–927.

    Google Scholar 

  • Collins FA, Murphy DL, Reiss AL et al (1992) Clinical, biochemical and neuropsychiatric evaluation of a patient with a contiguous gene syndrome due to a microdeletion Xp11.3 including the Norrie disease locus and monoamine oxidase (MAOA and MAOB) genes.Am J Med Genet 42: 127–134.

    Google Scholar 

  • Curtius H-Ch, Takikawa S, Niederwieser A, Ghisla S (1986) Tetrahydrobiopterin biosynthesis in man. In Cooper BA, Whitehead VM, eds.Chemistry and Biology of Pteridines 1986. Berlin: Wlater de Gruyter, 141–149.

    Google Scholar 

  • Curtius H-Ch, Adler C, Rebrin I, Heizmann C, Ghisla S (1990) 7-Substituted pterins: formation during phenylalanine hydroxylase in the absence of dehydratase.Biochem Biophys Res Commun 172: 1060–1066.

    Google Scholar 

  • Dhondt JL (1987) Tetrahydrobiopterin deficiency. Lessons from analysis of 90 patients collected in the international register.Arch Fr Pediatr 44: 655–659.

    Google Scholar 

  • Dhondt JL (1991)Register of Tetrahydrobiopterin Deficiencies. Laboratoire de Biochimie, Faculte Libre de Medicine, 45 rue du Port, 59046 Lille Cedex, France.

    Google Scholar 

  • Dhondt JL, Ardouin P, Hayte JM, Farriaux JP (1981) Developmental aspects of pteridine metabolism and relationships with phenylalanine metabolism.Clin Chim Acta 116: 143–152.

    Google Scholar 

  • Dhondt JL, Guibaud P, Rolland MO (1988) Neonatal hyperphenylalaninemia presumably caused by a new variant of biopterin synthetase deficiency.Eur J Pediatrics 147: 153–157.

    Google Scholar 

  • Duch DS, Smith GK (1991) Biosynthesis and function of tetrahydrobiopterin.J Nutr Biochem 2: 411–423.

    Google Scholar 

  • Endres W, Ibel H, Kierat L, Blau N, Curtius H-Ch (1987) Tetrahydrobiopterin and ‘nonresponsive’ dihydropteridine reductase deficiency.Lancet 2: 223.

    Google Scholar 

  • Hoganson G, Berlow S, Kaufman S et al (1984) Biopterin synthesis defects: Problems in diagnosis.Pediatrics 74: 1004–1011.

    Google Scholar 

  • Howells DW, Hyland K (1987) Direct analysis of tetrahydrobiopterin in cerebrospinal fluid by high-performance liquid chromatography with redox electrochemistry: prevention of autoxidation during storage and analysis.Clin Chim Acta 167: 23–30.

    Google Scholar 

  • Hyland K, Bottiglieri T (1992) Measurement of total plasma and cerebrospinal fluid homocysteine by fluorescence following high performance liquid chromatography and precolumn derivatization witho-phthaldialdehyde.J Chromatogr 579(1): 55–62.

    Google Scholar 

  • Hyland K, Clayton PT (1990) Aromatic amino acid decarboxylase deficiency in twins.J Inher Metab Dis 13: 301–304.

    Google Scholar 

  • Hyland K, Clayton PT (1992) Aromaticl-amino acid decarboxylase deficiency: diagnostic methodology.Clin Chem 38: 2405–2410.

    Google Scholar 

  • Hyland K, Howells DW (1988) Analysis and clinical significance of pterins.J Chromatogr 429: 95–121.

    Google Scholar 

  • Hyland K, Surtees R (1992) Measurement of 5-methyltetrahydrofolate in cerebrospinal fluid using HPLC with coulometric electrochemical detection.Pteridines 3: 149–150.

    Google Scholar 

  • Hyland K, Smith I, Clayton PT, Leonard JV (1985) Impaired neurotransmitter amine metabolism in arginase deficiency.J Neurol Neurosurg Psychiatr 48: 1188.

    Google Scholar 

  • Hyland K, Howell DW, Smith I (1986) An isocratic high-performance liquid chromatographic system for the investigation of abnormalities of neurotransmitter amine, biopterin, and aromatic amino acid metabolism in cerebrospinal fluid using sequential coulometric electrochemical and fluorescence detection. In Joseph MH, Fillenz M, Macdonald IA, Marsden C, eds.Monitoring Neurotransmitter Release During Behaviour. Oxford, UK: A Ellis Howard, 233–238.

    Google Scholar 

  • Hyland K, Surtees R, Rodeck C, Clayton PT (1992) Aromaticl-amino-acid decarboxylase deficiency: clinical features, diagnosis and treatment of a new inborn error of neurotransmitter amine synthesis.Neurology 42: 1980–1988.

    Google Scholar 

  • Hyman SL, Porter CA, Page TJ et al (1987) Behavioral management of feeding disturbances in urea cycle and organic acid disorders.J Pediatr 111: 558–562.

    Google Scholar 

  • Ito M, Okuno T, Mikawa H (1980) Elevated homovanillic acid in cerebrospinal fluid of children with infantile spasms.Epilepsia 21: 387–392.

    Google Scholar 

  • Kaufman S (1981) Regulatory properties of pterin dependent hydroxylases: variations on a theme. In Usdin E, Weiner N, Youdim MBH, eds.Function and Regulation of Monoamine Enzymes. New York: Macmillan, 165–173.

    Google Scholar 

  • Kaufman S (1986) Unsolved problems in diagnosis and therapy of hyperphenylalaninemia caused by defects in tetrahydrobiopterin metabolism.J Pediatr 109: 572–578.

    Google Scholar 

  • Kaufman S, Holtzman NA, Milstein S, Butler IJ, Krumholz A (1975) Phenylketonuria due to deficiency of dihydropteridine reductase.N Engl J Med 293: 785–790.

    Google Scholar 

  • Kaufman S, Kapatos G, Rizzo WB, Schulman JD, Tamarkin L, Van Loon GR (1983) Tetrahydropterin therapy for hyperphenylalaninaemia caused by defective synthesis of tetrahydrobiopterin.Ann Neurol 14: 308–315.

    Google Scholar 

  • Langlais PJ, Walsh FX, Bird ED, Levy HL (1985) Cerebral fluid neurotransmitter metabolites in neurologically normal infants and children.Pediatrics 75: 580–586.

    Google Scholar 

  • Lloyd KG, Hornykiewicz O, Davidson L et al (1981) Biochemical evidence of dysfunction of brain neurotransmitters in the Lesch-Nyhan syndrome.N Engl J Med 305: 1106–1111.

    Google Scholar 

  • Man in't Veld AJ, Boomsma F, Moleman P, Schalekamp MADH (1987) Congenital dopamine-beta-hydroxylase deficiency.Lancet 1: 183–188.

    Google Scholar 

  • Nagatsu T (1991) Genes for human catecholamine-synthesizing enzymes.Neurosci Res 12: 315–345.

    Google Scholar 

  • Nichol CA, Smith GK, Duch DS (1985) Biosynthesis and metabolism of tetrahydrobiopterin and molybdopterin.Annu Rev Biochem 54: 729–764.

    Google Scholar 

  • Niederwieser A, Staudenmann W, Wetzel E (1982a) Automated HPLC of pterins with or without column switching. In Wachter H, Curtius HCh, Pfleiderer W, eds.Biochemical and Clinical Aspects of Pteridines, Vol. 1 Berlin: de Gruyter, 81–102.

    Google Scholar 

  • Niederwieser A, Curtius H-Ch, Wang M, Leupold D (1982b) Atypical phenylketonuria with defective biopterin metabolism. Monotherapy with tetrahydrobiopterin or sepiapterin, screening and study of biosynthesis in man.Eur J Pediatr 138: 110–112.

    Google Scholar 

  • O'Kusky JR, Boyes BE, Walker DG, McGeer EG (1991) Cytomegalovirus infection of the developing brain alters catecholamine and indoleamine metabolism.Brain Res 559: 322–330.

    Google Scholar 

  • Ponzone A, Blau N, Guardamagna O, Ferrero GB, Dianzani I, Endres W (1990) Progression of 6-pyruvoyltetrahydropterin synthase deficiency from a peripheral into a central phenotype.J Inher Metab Dis 13: 298–290.

    Google Scholar 

  • Robertson D, Goldberg MR, Onrot J et al (1986) Isolated failure of autonomic noradrenergic neurotransmission.N Engl J Med 314: 1494–1497.

    Google Scholar 

  • Scriver CR, Kaufman S, Woo SLC (1990) The Hyperphenylalaninemias. In Scriver CR, Beaudet AL, Sly WS, Valle D, eds.The Metabolic Basis of Inherited Disease, 6th edn. New York: McGraw-Hill, 495–546.

    Google Scholar 

  • Sharpless NS, McCann DS (1971) Dopa and 3-O-methyldopa in cerebrospinal fluid of Parkinsonian patients during treatment with orall-dopa.Clin Chim Acta 31: 155–169.

    Google Scholar 

  • Shaywitz BA, Cohen DJ, Bowers MB (1975) Reduced cerebrospinal fluid 5-hydroxyindoleacetic acid and homovanillic acid in children with epilepsy.Neurology 25: 72–76.

    Google Scholar 

  • Silverstein F, Johnston MV (1984) Cerebrospinal fluid monoamine metabolites in infant spasms.Neurology 34: 102–105.

    Google Scholar 

  • Smith I (1990) Disorders of tetrahydrobiopterin metabolism. In Fernandes J, Saudubray JM, Tada K, eds.Inborn Metabolic Disease. Heidelberg: Springer Verlag, 183–197.

    Google Scholar 

  • Smith I, Dhondt JL (1985) Birthweight in patients with defective biopterin synthesis.Lancet 1: 818.

    Google Scholar 

  • Smith I, Clayton BE, Wolff OH (1975) New variant of phenylketonuria with progressive neurological illness unresponsive to phenylalanine restriction.Lancet 1: 1108–1111.

    Google Scholar 

  • Smith I, Hyland K, Kendall B, Leeming R (1985) Clinical role of pteridine therapy in tetrahydrobiopterin deficiency.J Inher Metab Dis 8 (Suppl 1): 39–45.

    Google Scholar 

  • Sugie H, Sugi Y, Kato N, Fukuyama Y (1989) A patient with infantile spasms and low homovanillic acid levels in cerebrospinal fluid:l-dopa dependent seizures?Eur J Pediatr 148: 667–668.

    Google Scholar 

  • Surtees R, Hyland K (1989) A method for the measurement ofS-adenosylmethionine in small volume samples of cerebrospinal fluid or brain using high performance liquid chromatography.Anal Biochem 181: 331–335.

    Google Scholar 

  • Wenk GL, Naidu S, Casanova MF, Kitt CA, Moser H (1991) Altered neurochemical markers in Rett's syndrome.Neurology 41: 1753–1756.

    Google Scholar 

  • Wester P, Bergstromm U, Eriksson A, Gezelius C, Hardy J, Winblad G (1990) Ventricular cerebrospinal fluid monoamine transmitter and metabolite concentrations reflect human brain neurochemistry in autopsy cases.J Neurochem 54: 1148–1156.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hyland, K. Abnormalities of biogenic amine metabolism. J Inherit Metab Dis 16, 676–690 (1993). https://doi.org/10.1007/BF00711900

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00711900

Keywords

Navigation