Advertisement

Journal of Muscle Research & Cell Motility

, Volume 2, Issue 2, pp 141–166 | Cite as

Intermediate filaments: a family of homologous structures

  • Brian H. Anderton
Review

Keywords

Intermediate Filament Homologous Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ABERNATHY, J. L., HILL, R. L. & GOLDSMITH, L. A. (1977) ε-(γ-Glutamyl) lysine cross-links in human stratum corneum.J. biol. Chem. 252, 1837–9.Google Scholar
  2. ANDERTON, B. H., AYERS, M. & THORPE, R. (1978) Neurofilaments from mammalian central and peripheral nerve share certain polypeptides.FEBS Lett. 96, 159–63.Google Scholar
  3. ANDERTON, B. H., THORPE, R., COHEN, J., SELVENDRAN, S. & WOODHAMS, P. (1980) Specific neuronal localization by immunofluorescence of 10 nm filament polypeptides.J. Neurocytol. 9, 835–44.Google Scholar
  4. ANTANITUS, D. S., CHOI, B. H. & LAPHAM, L. W. (1975) Immunofluorescence staining of astrocytesin vitro using antiserum to glial fibrillary acidic protein.Brain Res. 89, 363–7.Google Scholar
  5. AUBIN, J. E., OSBORN, M., FRANKE, W. W. & WEBER, K. (1980) Intermediate filaments of the vimentin-type and the cytokeratin-type are distributed differently during mitosis.Expl Cell Res. 129, 149–65.Google Scholar
  6. BENNETT, G. S., FELLINI, S. A., CROOP, J. M., OTTO, J. J., BRYAN, J. & HOLTZER, H. (1978a) Differences among 100 Å filament subunits from different cell types.Proc. natn. Acad. Sci. 75, 4364–8.Google Scholar
  7. BENNETT, G. S., FELLINI, S. A. & HOLTZER, H. (1978b) Immunofluorescent visualisation of 100 Å filaments in different cultured chick embryo cell types.Differentiation 12, 71–82.Google Scholar
  8. BENNETT, G. S., FELLINI, S. A., TOYAMA, Y. & HOLTZER, H. (1979) Redistribution of intermediate filament subunits during skeletal myogenesis and maturationin vitro.J. Cell Biol. 82, 577–84.Google Scholar
  9. BERKOWITZ, S. A., KATAGIRI, J., BINDER, H. K. & WILLIAMS, R. C. (1977) Separation and characterisation of microtubule proteins from calf brain.Biochemistry 16, 5610–7.Google Scholar
  10. BLOSE, S. H. (1979) Ten-nanometer filaments and mitosis: Maintenance of structural continuity in dividing endothelial cells.Proc. natn. Acad. Sci. 76, 3372–6.Google Scholar
  11. BLOSE, S. (1980) The microtubule organising centres, MTOCS, are surrounded by the ten nanometer filament ring of endothelial cells in interphase and mitosis.Eur. J. Cell Biol. 22, 373.Google Scholar
  12. BLOSE, S. & CHACKO, S. (1976) Rings of intermediate (100 Å) filament bundles in the perinuclear region of vascular endothelial cells. Their mobilisation by colcemid and mitosis.J. Cell Biol. 70, 459–66.Google Scholar
  13. BLOSE, S. H., SHELANSKI, M. L. & CHACKO, S. (1977) Localisation of bovine brain filament antibody on intermediate (100 Å) filaments in guinea pig vascular endothelial cells and chick cardiac muscle cells.Proc. natn. Acad. Sci. 74, 662–5.Google Scholar
  14. BOWDEN, P. E. & CUNLIFFE, W. J. (1980) The analysis of human epidermal proteins by SDS-polyacrylamide gradient gel electrophoresis.Br. J. Derm. 102, 739.Google Scholar
  15. BOWDEN, P. E. & CUNLIFFE, W. J. (1981a) The composition of prekeratin and keratin from psoriatic epidermis.Br. J. Derm. (in press).Google Scholar
  16. BOWDEN, P. E. & CUNLIFFE, W. J. (1981b) Modification of human prekeratin during epidermal differentiation.Biochem. J. (in press).Google Scholar
  17. BROWN, S. LEVINSON, W. & SPUDICH, J. A. (1976) Cytoskeletal elements of chick embryo fibroblasts revealed by detergent extraction.J. Supramol. Struct. 5, 119–30.Google Scholar
  18. BRULET, P., BABINET, C., KEMLER, R. & JACOB, F. (1980) Monoclonal antibodies against trophectoderm-specific markers during mouse blastocyst formation.Proc. natn. Acad. Sci. 77, 4113–7.Google Scholar
  19. BURRIDGE, K. (1978) Direct identification of specific glycoproteins and antigens in sodium dodecyl sulphate gels. InMethods in Enzymology, Vol. 50 (edited by COLWICK, S. P. & KAPLAN, N. O.), pp. 54–64. New York: Academic Press.Google Scholar
  20. CABRAL, F. & GOTTESMAN, M. M. (1979) Phosphorylation of the 10 nm filament protein from Chinese hamster ovary cells.J. biol. Chem. 254, 6203–6.Google Scholar
  21. CHIU, F-C, KOREY, B. & NORTON, W. T. (1980) Intermediate filaments from bovine, rat and human CNS: Mapping analysis of the major proteins.J. Neurochem. 34, 1149–59.Google Scholar
  22. CLEVELAND, D. W., FISCHER, S. G., KIRSCHNER, M. W. & LAEMMLI, U. K. (1977) Peptide mapping by limited proteolysis in sodium dodecyl sulphate and analysis by gel electrophoresis.J. biol. Chem. 252, 1102–6.Google Scholar
  23. CLEVELAND, D. W., LAPATA, M. A., MACDONALD, R. J., COWAN, N. J., RUTTER, W. J. & KIRSCHNER, M. W. (1980) Number and evolutionary conservation of α- and β-tubulin and cytoplasic β- and γ-actin genes using specific cloned c-DNA probes.Cell 20, 95–105.Google Scholar
  24. COOKE, P. (1976) A filamentous cytoskeleton in vertebrate smooth muscle fibres.J. Cell Biol. 68, 539–56.Google Scholar
  25. CZOSNEK, H. & SOIFER, D. (1980) Comparison of the proteins of 10 nm filaments from rabbit sciatic nerve and spinal cord by electrophoresis in two dimensions.FEBS Lett. 117, 175–8.Google Scholar
  26. CZOSNEK, H., SOIFER, D., MACK, K. & WISNIEWSKI, H. M. (1981) Similarity of neurofilament proteins from different parts of the rabbit system.Brain Res. (in press).Google Scholar
  27. CZOSNEK, H., SOIFER, D. & WISNIEWSKI, H. M. (1980a) Heterogeneity of intermediate filament proteins from rabbit spinal cord.Neurochem. Res. 5, 777–93.Google Scholar
  28. CZOSNEK, H., SOIFER, D. & WISNIEWSKI, H. M. (1980b) Studies on the biosynthesis of neurofilament proteins.J. Cell. Biol. 85, 726–34.Google Scholar
  29. DAHL, D. (1976) Glial fibrillary acidic protein from bovine and rat brain. Degradation in tissues and homogenates.Biochim. Biophys. Acta 420, 142–54.Google Scholar
  30. DAHL, D. (1979) The cyanogen bromide peptide maps of neurofilament polypeptides in axonal preparations isolated from bovine brain are different.FEBS Lett. 103, 144–7.Google Scholar
  31. DAHL, D. (1980) Study on the immunological crossreactivity of neurofilament polypeptides in axonal preparations of bovine brain.FEBS Lett. 111, 152–6.Google Scholar
  32. DAHL, D. & BIGNAMI, A. (1973) Immunochemical and immunofluorescence studies of the glial fibrillary acidic protein in vertebrates.Brain Res. 61, 279–93.Google Scholar
  33. DAHL, D. & BIGNAMI, A. (1978) Neurofilament protein in clonal lines of mouse neuroblastoma.Devl Neurosci. 1, 142–52.Google Scholar
  34. DAVID-FERREIRA, K. L., & DAVID-FERREIRA, J. F. (1980) Association between intermediatesized filaments and mitochondria in rat Leydig cells.Cell Biol. Int. Rep. 4, 655–62.Google Scholar
  35. DAVISON, P. F. & JONES, R. (1980) Neurofilament proteins of mammals compared by peptide mapping.Brain Res. 182, 470–3.Google Scholar
  36. DAVISON, P. F. & WINSLOW, B. (1974) The protein subunit of calf brain neurofilament.J. Neurobiol. 5, 119–33.Google Scholar
  37. DAY, W. A. & GILBERT, D. S. (1972) X-ray diffraction pattern of axoplasm.Biochim. Biophys. Acta 285, 503–6.Google Scholar
  38. DELACOURTE, A., FILLIATREAU, G., BOUTTEAU, F., BISERTE, G. & SCHREVEL, J. (1980) Study of the 10 nm filament fraction isolated during the standard microtubule preparation.Biochem. J. 191, 543–6.Google Scholar
  39. DROCHMANS, P., FREUDENSTEIN, C., WANSON, J-C., LAURENT, L., KENNAN, T. W., STADLER, J., LELOUP, R. & FRANKE, W. W. (1978) Structure and biochemical composition of desmonosomes and tonofilaments isolated from calf muzzle epidermis.J. Cell Biol. 79, 427–43.Google Scholar
  40. EAGLES, P. A. M., GILBERT, D. S., HOPKINS, J. M., MAGGS, A. & WAIS, C. (1980) Neurofilament structure and enzymatic modification.Cell Biol. Int. Rep. 4, 731.Google Scholar
  41. ECKERT, B. S., KOONS, S. J., SCHENTZ, A. W. & ZOBEL, C. R. (1980) Association of creatine phosphokinase with the cytoskeleton of cultured mammalian cells.J. Cell Biol. 86, 1–5.Google Scholar
  42. ENG, L. F., VANDERHAEGHEN, J. J., BIGNAMI, A. & GERTL, B. (1971) An acidic protein isolated from fibrous astrocytes.Brain Res. 28, 351–4.Google Scholar
  43. FELLINI, S. A., BENNETT, G. S., TOYAMA, Y. & HOLTZER, H. (1978) Biochemical and immunological heterogeneity of 100 Å filament subunits from different chick cell types.Differentiation 12, 59–69.Google Scholar
  44. FRANKE, W. W., SCHMID, E., OSBORN, M. & WEBER, K. (1978a) The intermediate-sized filaments in rat kangaroo Pt-K2 cells. II. Structure and composition of isolated filaments.Cytobiologie 17, 392–411.Google Scholar
  45. FRANKE, W. W., SCHMID, E., OSBORN, M. & WEBER, K. (1978b) Different intermediate-sized filaments distinguished by immunofluorescence microscopy.Proc. natn. Acad. Sci. 75, 5034–8.Google Scholar
  46. FRANKE, W. W., WEBER, K., OSBORN, M., SCHMID, E. & FREUDENSTEIN, C. (1978c) Antibody to prekeratin. Decoration of tonofilament-like arrays in various cells of epithelial character.Expl Cell Res. 116, 429–45.Google Scholar
  47. FRANKE, W. W., SCHMID, E., WEBER, K. & OSBORN, M. (1979a) HeLa cells contain intermediate-sized filaments of the prekeratin type.Expl Cell Res. 118, 95–109.Google Scholar
  48. FRANKE, W. W., SCHMID, E., WINTER, S., OSBORN, M. & WEBER, K. (1979b) Widespread occurrence of intermediate-sized filaments of the vimentin-type in cultured cells from diverse vertebrates.Expl Cell Res. 123, 25–46.Google Scholar
  49. FUCHS, E. & GREEN, H. (1978) The expression of keratin genes in epidermis and cultured epidermal cells.Cell 15, 887–97.Google Scholar
  50. FUCHS, E. & GREEN, H. (1979) Multiple keratins of cultured human epidermal cells are translated from different m-RNA molecules.Cell 17, 573–82.Google Scholar
  51. FUCHS, E. & GREEN, H. (1980a) Changes in keratin gene expression during terminal differentiation of the keratiocyte.Cell 19, 1033–42.Google Scholar
  52. FUCHS, E. & GREEN, H. (1980b) Changes in keratin gene expression during terminal differentiation in mammalian epithelial cells.J. Cell Biol. 87, 178a.Google Scholar
  53. FULTON, A. B., WAN, K. M. & PENMAN, S. (1980) The spatial distribution of polyribosomes in 3T3 cells and the associated assembly of proteins into the skeletal framework.Cell 20, 849–57.Google Scholar
  54. GARD, D. L., BELL, P. B. & LAZARIDES, E. (1979) Co-existence of desmin and the fibroblastic intermediate filament subunit in muscle and non-muscle cells: identification and comparative peptide analysis.Proc. natn. Acad. Sci. 76, 3894–8.Google Scholar
  55. GARD, D. L. & LAZARIDES, E. (1980) The synthesis and distribution of desmin and vimentin during myogenesisin vitro.Cell 19, 263–75.Google Scholar
  56. GEIGER, B. & SINGER, S. J. (1980) Association of microtubules and intermediate filaments in chicken gizzard cells as detected by double immunofluorescence.Proc. natn. Acad. Sci. 77, 4769–73.Google Scholar
  57. GILBERT, D. S., NEWBY, B. J. & ANDERTON, B. H. (1975) Neurofilament disguise, destruction and discipline.Nature 256, 586–9.Google Scholar
  58. GOLDMAN, J. E., SCHAUMBURG, H. M. & NORTON, W. T. (1978) Isolation and characterisation of glial filaments from human brain.J. Cell Biol. 78, 426–40.Google Scholar
  59. GORDON, W. E., BUSHNELL, A. & BURRIDGE, K. (1978) Characterisation of the intermediate (10 nm) filaments of cultured cells using an autoimmune rabbit antiserum.Cell 13, 249–61.Google Scholar
  60. GOZES, I. & LITTAUER, U. Z. (1978) Tubulin microheterogeneity increases with rat brain maturation.Nature 276, 411–3.Google Scholar
  61. GRANGER, B. L. & LAZARIDES, E. (1978) The existence of an insoluble z-disc scaffold in chicken skeletal muscle.Cell 15, 1253–68.Google Scholar
  62. GRANGER, B. L. & LAZARIDES, E. (1979) Desmin and vimentin co-exist at the periphery of the myofibril z-disc.Cell 18, 1053–63.Google Scholar
  63. GRANGER, B. L. & LAZARIDES, E. (1980) Synemin: a new high molecular weight protein associated with desmin and vimentin filaments in muscle.Cell 22, 727–38.Google Scholar
  64. GRAY, R. H., BRABEC, R. K., BYRSK, M. M. & BERSTEIN, I. A. (1977) Immunocytochemical localisation of a protein in tonofilaments as a morphologic marker for epidermal differentiation.J. Histochem. Cytochem. 25, 1127–39.Google Scholar
  65. HOFFMAN, P. N. & LASEK, R. J. (1975) The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons.J. Cell Biol. 66, 351–66.Google Scholar
  66. HUBBARD, B. D. & LAZARIDES, E. (1979) Co-purification of actin and desmin from chicken smooth muscle and their polymerisationin vitro into intermediate filaments.J. Cell Biol. 80, 166–82.Google Scholar
  67. HYNES, R. O. & DESTREE, A. T. (1978) 10 nm filaments in normal and transformed cells.Cell 13, 151–63.Google Scholar
  68. ISHIKAWA, H., BISCHOFF, R. & HOLTZER, H. (1968) Mitosis and intermediate-sized filaments in developing skeletal muscle.J. Cell Biol. 38, 538–55.Google Scholar
  69. IZANT, J. G. & LAZARIDES, E. (1977) Invariance and heterogeneity in the major structural and regulatory proteins of chick muscle cells revealed by two-dimensional gel electrophoresis.Proc. natn. Acad. Sci. 74, 1450–4.Google Scholar
  70. IZANT, J. G. & McINTOSH, J. R. (1980) Microtubule associated proteins: a monoclonal antibody to MAP 2 binds to differentiated neurones.Proc. natn. Acad. Sci. 77, 4741–5.Google Scholar
  71. JACOBS, M., CHOO, F. & THOMAS, C. (1980) Neurofilaments and vimentin in cultured neurones.Cell Biol. Int. Rep. 4, 778.Google Scholar
  72. KEMP, D. J. (1975) Unique and repetitive sequences in multiple genes for feather keratin.Nature 254, 573–77.Google Scholar
  73. KEMP, D. J. & ROGERS, G. E. (1972) Differentiation of avian keratinocytes. Characterisation and relationships of the keratin proteins of adult and embryonic feathers and scales.Biochemistry 11, 969–75.Google Scholar
  74. KRISHNAN, N., KAISERMAN-ABROMOF, I. R. & LASEK, R. J. (1979) Helical substructure of neurofilaments isolated fromMyxicola and squid giant axons.J. Cell Biol. 82, 323–35.Google Scholar
  75. LANE, E. B. (1980) A study of cytokeratin intemediate filaments in cultured epithelial cells using monoclonal antibodies.Eur. J. Cell Biol. 22, 371.Google Scholar
  76. LASEK, R. J. & BLACK, M. M. (1977) How do axons stop growing? Some clues from the metabolism of the proteins in the slow component of axonal transport. InMechanisms, Regulation and Special Functions of Protein Synthesis in the Brain (edited by ROBERTS, S., LAJTHA, A. and GISPEN, W. H.), pp. 161–69. Amsterdam: Elsevier/North Holland.Google Scholar
  77. LASEK, R. J., KRISHNAN, N. & KAISERMAN-ABRAMOF, I. R. (1979) Identification of the subunit proteins of 10 nm neurofilaments isolated from axoplasm of squid andMyxicola giant axons.J. Cell Biol. 82, 336–46.Google Scholar
  78. LASEK, R. J. & WU, J.-Y. (1976) Immunochemical analysis of the proteins comprisingMyxicola (10 nm) neurofilaments.Neurosci. Abstr. 2, 40.Google Scholar
  79. LAZARIDES, E. (1980) Intermediate filaments as mechanical integrators of cellular space.Nature 282, 249–56.Google Scholar
  80. LAZARIDES, E. & GRANGER, B. L. (1978) Fluorescent localisation of membrane sites in glycinerated chicken skeletal muscle fibres and the relationship of these sites to the protein composition of the Z disc.Proc. natn. Acad. Sci. 75, 3683–7.Google Scholar
  81. LAZARIDES, E. & HUBBARD, B. D. (1976) Immunological characterization of the subunit of the 100 Å filaments from muscle cells.Proc. natn. Acad. Sci. 76, 4344–8.Google Scholar
  82. LEE, L. D., KUBILUS, J. & BADEN, H. P. (1979) Intraspecies heterogeneity of epidermal keratins isolated from bovine hoof and snout.Biochem. J. 177, 187–96.Google Scholar
  83. LENK, R., RANSOM, L., KAUFMANN, Y. & PENMAN, S. (1977) A cytoskeletal structure with associated polyribosomes obtained from HeLa cells.Cell 10, 67–78.Google Scholar
  84. LIEM, R. K. H., YEN, S.-H. SOLOMON, G. D. & SHELANSKI, M. L. (1978) Intermediate filaments in nervous tissue.J. Cell Biol. 79, 637–45.Google Scholar
  85. MANDELKOW, E. & FRANKE, W. W. (1980) Comparative X-ray diffraction study of several types of intermediate (10 nm) filaments.Eur. J. Cell Biol. 22, 370.Google Scholar
  86. MARROTTA, C. A., STROCCHI, P. & GILBERT, P. M. (1979) Subunit structure of synaptosomal tubulin.Brain Res. 167, 93–106.Google Scholar
  87. MATUS, A. I., NG, M. & HUGH JONES, D. (1979) Immunohistochemical localisation of neurofilament antigen in rat cerebellum.J. Neurocytol. 8, 513–25.Google Scholar
  88. MICKO, S. & SCHLAEPFER, W. W. (1978) Protein composition of axons and myelin from rat and human peripheral nerves.J. Neurochem. 30, 1041–9.Google Scholar
  89. MILSTONE, L. M. & McGUIRE, J. (1981) Different polypeptides from the intermediate filaments in bovine hoof and esophageal epithelium and in aortic endothelium.J. Cell Biol. 88, 312–6.Google Scholar
  90. MORI, H. & KUROKAWA, M. (1979) Purification of neurofilaments and their interaction with vinblastine sulphate.Cell Struct. Funct. 4, 163–7.Google Scholar
  91. NELSON, W. J. & TRAUB, P. (1980) A protease that degrades intermediate-sized filament protein.Cell Biol. Int. Rep. 4, 733.Google Scholar
  92. O'CONNOR, C. M., BALZAR, D. R. & LAZARIDES, E. (1979) Phosphorylation of subunit proteins of intermediate filaments from chicken muscle and non-muscle cells.Proc. natn. Acad. Sci. 76, 819–23.Google Scholar
  93. OGAWA, H., TANEDA, A., SEBINE, T. & KANOODA, Y. (1979) The histochemical distribution of protein bound sulphydryl groups in human epidermis by the new staining method.J. Histochem. Cytochem. 27, 942–6.Google Scholar
  94. OSBORN, M. & WEBER, K. (1977) The detergent-resistant cytoskeleton of tissue culture cells includes the nucleus and the microfilament bundles.Expl Cell Res. 106, 339–49.Google Scholar
  95. PAETAU, A., VIRTANEN, I., STENMAN, S., KURKI, P., LINDER, E., VAHERI, A., WESTERMARK, B., DAHL, D. & HALTIA, M. (1979) Glial fibrillary acidic protein and intermediate filaments in human glioma cells.Acta Neuropath. 47, 71–4.Google Scholar
  96. PANT, H. C., POLLARD, H. B., PAPPAS, G. D. & GAINER, H. (1979a) Phosphorylation of specific, distinct proteins in synaptosomes and axons from squid nervous system.Proc. natn. Acad. Sci. 76, 6071–5.Google Scholar
  97. PANT, H. C., SHECKET, G., GAINER, H. & LASEK, R. J. (1978) Neurofilament protein is phosphorylated in the squid giant axon.J. Cell. Biol. 78, R23–7.Google Scholar
  98. PANT, H. C., TERAKAWA, S. & GAINER, H. (1979b) A calcium activated protease in squid axoplasm.J. Neurochem. 32, 99–102.Google Scholar
  99. PRUSS, R. M., MIRSKY, R., RAFF, M. C., ANDERTON, B. H. & THORPE, R. (1980) A monoclonal antibody demonstrates that intermediate filaments share a common antigen.J. Cell Biol. 87, 178a.Google Scholar
  100. PYTELA, R. & WICKE, G. (1980) High molecular weight (270 000–340 000) from cultured cells are related to hog brain microtubule-associated proteins but co-purify with intermediate filaments.Proc. natn. Acad. Sci. 77, 4808–12.Google Scholar
  101. RAMAEKERS, F. C. S., OSBORN, M., SCHMID, E., WEBER, K., BLOEMENDAL, H. & FRANKE, W. (1980) Identification of the cytoskeletal proteins in lens-forming cells, a special epithelial cell type.Expl Cell Res. 127, 309–27.Google Scholar
  102. RICE, R. V., ROSLANSKY, P. F., PASCOE, N. & HOUGHTON, S. M. (1980) Bridges between microtubules and neurofilaments visualised by stereo electron microscopy.J. Ultrastruct. Res. 71, 303–10.Google Scholar
  103. ROSLANSKY, P. F., CORNELL-BELL, A., RICE, R. V. & ADELMAN, W. J. (1980) Polypeptide composition of squid neurofilaments.Proc. natn. Acad. Sci. 77, 404–8.Google Scholar
  104. RUEGER, D. C., HUSTON, J. S., DAHL, D. & BIGNAMI, A. (1979) Formation of 100 Å filaments from purified glial fibrillary acidic proteinin vitro.J. molec. Biol. 135, 53–68.Google Scholar
  105. RUNGE, M. S., DETRICH, H. W. & WILLIAMS, R. C. (1979a) Identification of the major 68K dalton protein of microtubule preparations as a 10 nm filament protein and its effect on microtubule assemblyin vitro.Biochemistry 18, 1689–98.Google Scholar
  106. RUNGE, M. S., HEWGLEY, P. B., PUETT, D. & WILLIAMS, R. C. (1979b) Cyclic nucleotide phosphodiesterase activity in 10 nm filaments and microtubule preparations from bovine brain.Biochemistry 76, 2561–6.Google Scholar
  107. SCHACHNER, M., HEDLEY-WHYTE, E. T., HSU, D. W., SCHOONMAKER, G. & BIGNAMI, A. (1977) Ultrastructural localisation of glial fibrillary acidic protein in mouse cerebellum by immunoperoxidase labelling.J. Cell Biol. 75, 67–73.Google Scholar
  108. SCHECKET, G. & LASEK, R. J. (1979) Phosphorylation of neurofilament protein.J. Cell Biol. 83, 143a.Google Scholar
  109. SCHECKET, G. & LASEK, R. J. (1980) Preparation of neurofilament proteins from guinea pig peripheral nerve and spinal cord.J. Neurochem. 35, 1335–44.Google Scholar
  110. SCHLAEPFER, W. W. (1978) Observations on the disassembly of isolated mammalian neurofilaments.J. Cell Biol. 76, 50–6.Google Scholar
  111. SCHLAEPFER, W. W. & HASLER, M. B. (1979) Characterisation of the calcium-induced disruption of neurofilaments in rat peripheral nerve.Brain Res. 168, 299–309.Google Scholar
  112. SCHLAEPFER, W. W. & LYNCH, R. G. (1977) Immunofluorescence studies of neurofilaments in the rat and human peripheral and central nervous system.J. Cell Biol. 74, 241–50.Google Scholar
  113. SCHLAEPFER, W. W. & MICKO, S. (1979) Calcium-dependent alterations of neurofilament proteins of rat peripheral nerve.J. Neurochem. 32, 211–9.Google Scholar
  114. SCHMID, E., GHOSAL, D. & FRANKE, W. W. (1980) Biosynthesis of an intermediate filament protein, vimentin,in vivo and by translationin vitro.Eur. J. Cell Biol. 22, 374.Google Scholar
  115. SCHOLLMEYER, J. V. & DAYTON, W. R. (1979) Properties of a Ca2+-activated protease from normal and transformed fibroblasts.J. Cell Biol. 83, 318a.Google Scholar
  116. SCHWEIZER, J. & GOERTTLER, K. (1980) Synthesisin vitro of keratin polypeptides directed by m-RNA isolated from newborn and adult mouse epidermis.Eur. J. Biochem. 112, 243–9.Google Scholar
  117. SKERROW, D. (1974) The structure of prekeratin.Biochem. biophys. Res. Commun. 59, 1311–6.Google Scholar
  118. SKERROW, D. (1977) The isolation and preliminary characterisation of human prekeratin.Biochim. Biophys. Acta 494, 447–51.Google Scholar
  119. SKERROW, D. & HUNTER, I. (1978) Protein modifications during the keratinisation of normal and psoriatic human epidermis.Biochim. Biophys. Acta 537, 474–84.Google Scholar
  120. SMALL, J. V. & SOBIESZEK, A. (1977) Studies on the function and composition of the 10 nm (100 Å) filaments of vertebrate smooth muscle.J. Cell Sci. 23 243–68.Google Scholar
  121. STARGER, J. M., BROWN, W. E., GOLDMAN, A. E. & GOLDMAN, R. D. (1978) Biochemical and immunological analysis of rapidly purified 10 nm filaments from baby hamster kidney (BHK-21) cells.J. Cell Biol. 78, 93–109.Google Scholar
  122. STARGER, J. M. & GOLDMAN, R. D. (1977) Isolation and preliminary characterisation of 10 nm filaments from baby hamster kidney (BHK-21) cells.Proc. natn. Acad. Sci. 74, 2422–6.Google Scholar
  123. STEINERT, P. M. (1975) The extraction and characterisation of bovine epidermal α-keratin.Biochem. J. 149, 39–48.Google Scholar
  124. STEINERT, P. M. (1978) Structure of the three-chain unit of the bovine epidermal keratin filament.J. molec. Biol. 123, 49–70.Google Scholar
  125. STEINERT, P. M. & GULLINO, M. I. (1976) Bovine epidermal keratin filament assemblyin vitro.Biochem. biophys. Res. Commun. 70, 221–7.Google Scholar
  126. STEINERT, P. M. & IDLER, W. W. (1975) The polypeptide composition of bovine epidermal α-keratin.Biochem. J. 151, 603–14.Google Scholar
  127. STEINERT, P. M., IDLER, W. W. & GOLDMAN, R. D. (1980a) Intermediate filaments of baby hamster (BHK-21) cells and bovine epidermal keratinocytes have similar ultrastructures and subunit domain structures.Proc. natn. Acad. Sci. 77, 4534–8.Google Scholar
  128. STEINERT, P. M., IDLER, W. W. & WANTZ, M. L. (1980b) Characterisation of the keratin filament subunits unique to bovine snout epidermis.Biochem. J. 187, 913–6.Google Scholar
  129. STEINERT, P. M., IDLER, W. W., & ZIMMERMAN, S. B. (1976) Self-assembly of bovine epidermal keratin filamentsin vitro.J. molec. Biol. 108, 547–67.Google Scholar
  130. STEINERT, P. M., ZIMMERMAN, S. B., STARGER, J. M. & GOLDMAN, R. D. (1978) Ten-nanometer filaments of hamster BHK-21 cells and epidermal keratin filaments have similar structures.Proc. natn. Acad. Sci. 75, 6098–101.Google Scholar
  131. SUN, T.-T. & GREEN, H. (1977) Cultured epithelial cells of cornea, conjunctive and skin: absence of marked intrinsic divergence of their differentiated states.Nature 269, 489–93.Google Scholar
  132. SUN, T.-T. & GREEN, H. (1978a) Immunofluorescent staining of keratin fibres in cultured cells.Cell 14, 469–676.Google Scholar
  133. SUN, T.-T. & GREEN, H. (1978b) Keratin filaments of cultured human epidermal cells. Formation of intermolecular disulphide bonds during terminal differentiation.J. biol. Chem. 253, 2053–60.Google Scholar
  134. SUN, T.-T., SHIH, C. & GREEN, H. (1979) Keratin cytoskeletons in epithelial cells of internal organs.Proc. natn. Acad. Sci. 76, 2813–7.Google Scholar
  135. THORPE, R., ANDERTON, B. H., COHEN, J. & WOODHAMS, P. (1980) The identity and structure of neurofilament polypeptides.Biochem. Soc. Trans. 8, 614–5.Google Scholar
  136. THORPE, R., DELACOURTE, A., AYERS, M., BULLOCK, C. & ANDERTON, B. H. (1979) The polypeptides of isolated brain 10 nm filaments and their association with polymerised tubulin.Biochem. J. 181, 275–84.Google Scholar
  137. TUSZYNSKI, G. P., FRANK, E. D., DAMSKY, C. H., BUCK, C. A. & WARREN, L. (1979) The detection of smooth muscle desmin-like protein in BHK-21/C-13 fibroblasts.J. biol. Chem. 254, 6138–43.Google Scholar
  138. VIAC, J., SCHMITT, D., STAQUET, M. J., THIVOLET, J., ORTONNE, J. P. & BUSTAMANTE, R. (1980) Binding specificity of guinea pig anti α-keratin polypeptide sera on human keratinocytes; comparison of their receptors with those of human epidermal cytoplasmic antibodies.Acta Dermat. 60, 189–96.Google Scholar
  139. VIRTANEN, I., LEHTO, V.-P., LEHTONEN, E., KURKI, P., DAHL, D. & BADLEY, R. A. (1980) Intermediate filaments in cultured cells.Eur. J. Cell Biol. 22, 372.Google Scholar
  140. WANG, C., ASAI, D. J. & LAZARIDES, E. (1980) The 68 000-dalton neurofilament-associated polypeptide is a component of non-neuronal cells and of skeletal myofibrilsProc. natn. Acad. Sci. 77, 1541–5.Google Scholar
  141. WANG, E., CROSS, R. K. & CHOPPIN, P. W. (1979) Involvement of microtubules and 10 nm filaments in the movement and positioning of nuclei in syncytia.J. Cell Biol. 83, 320–37.Google Scholar
  142. WANG, E. & GOLDMAN, R. D. (1978) Functions of cytoplasmic fibres in intracellular movements in BHK-21 cells.J. Cell Biol. 79, 708–26.Google Scholar
  143. WHALEN, R. G., BUTLER-BROWNE, G. S. & GROS, F. (1976) Protein synthesis and actin heterogeneity in calf muscle cells in culture.Proc. natn. Acad. Sci. 73, 2018–22.Google Scholar
  144. WILLARD, M. B. (1976) Genetically determined protein polymorphism in the rabbit nervous system.Proc. natn. Acad. Sci. 73, 3641–5.Google Scholar
  145. WILLARD, M., SIMM, C., BAITINGER, C., LEVINE, J. & SKENE, P. (1980) Association of an axonally transported polypeptide(H) with 100 Å filaments. Use of immunoaffinity electron microscope grids.J. Cell Biol. 85, 587–96.Google Scholar
  146. WISNIEWSKI, H., SHELANSKI, M. L. & TERRY, R. D. (1968) Effects of mitotic spindle inhibitors on neurotubules and neurofilaments in anterior horn cells.J. Cell Biol. 38, 224–9.Google Scholar
  147. WOLOSEWICK, J. J. & PORTER, K. R. (1979) Microtrabecular lattice of the cytoplasmic ground substance. Artefact or reality.J. Cell Biol. 82, 114–39.Google Scholar
  148. WOOD, J. N. & ANDERTON, B. H. (1981) Monoclonal antibodies to mammalian neurofilaments.Biosci. Rep. 1, 263–8.Google Scholar
  149. YEN, S.-H., DAHL, D., SCHACHNER, M. & SHELANSKI, M. L. (1976) Biochemistry of the filaments of brain.Proc. natn. Acad. Sci. 73, 529–33.Google Scholar
  150. YEN, S.-H. & FIELDS, K. L. (1981) Antibodies to neurofilament, glial filament, and fibroblast intermediate filament proteins bind to different cell types of the nervous system.J. Cell Biol. 88, 115–26.Google Scholar
  151. ZACKROFF, R. V. & GOLDMAN, R. D. (1979)In vitro assembly of intermediate filaments from baby hamster kidney (BHK-21) cells.Proc. natn. Acad. Sci. 76, 6226–30.Google Scholar
  152. ZACKROFF, R. V. & GOLDMAN, R. D. (1980)In vitro reassembly of squid brain intermediate filaments (neurofilaments): purification by assembly-disassembly.Science 208, 1152–5.Google Scholar
  153. ZIEVE, G. W., HEIDEMAN, S. R. & MCINTOSH, J. R. (1980) Isolation and partial characterisation of a cage of filaments that surrounds the mammalian mitotic spindle.J. Cell Biol. 87, 160–9.Google Scholar

Copyright information

© Chapman and Hall Ltd 1981

Authors and Affiliations

  • Brian H. Anderton
    • 1
  1. 1.Department of ImmunologySt George's Hospital Medical SchoolLondonEngland

Personalised recommendations