X-ray structure and thermal analysis of a 1∶1 complex between sulfathiazole andβ-cyclodextrin

  • Mino R. Caira
  • Vivienne J. Griffith
  • Luigi R. Nassimbeni
  • Bosch van Oudtshoorn
Research Communication


An inclusion complex with the formula (β-cyclodextrin) (sulfathiazole) 8.3 H2O has been crystallized and characterized by physicochemical methods including single crystal X-ray analysis. The complex crystallizes in the monoclinic system, space group P21, witha=15.264(4),b= 16.500(6),c=15.559(5) Å,β=117.29(3)o andZ=2. The structure was solved using published co-ordinates forβ-cyclodextrin in an isomorphous complex. Refinement by block-diagonal leastsquares yieldedR=0.061 for 4706 unique observed reflections. Inclusion of sulfathiazole produces a slight ellipticity in the host conformation, but the guest adopts a conformation similar to that observed in its polymorphs. The guest is held in the macrocyclic cavity predominantly by hydrophobic forces, with the phenyl ring near the host primary hydroxyl side and the thiazole ring near the secondary hydroxyl side. The complex packs in layers parallel to theac-plane. Layers are linked by hydrogen bonding to water molecules which are located outside the cyclodextrin cavity. An extensive network of hydrogen bonds mediated chiefly by water molecules stabilizes the crystal structure.

Key words

β-Cyclodextrin sulfathiazole inclusion complex crystal structure thermal analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.J. Kruger and G. Gafner:Acta Crystallogr. B27, 326 (1971).Google Scholar
  2. 2.
    G.J. Kruger and G. Gafner:Acta Crystallogr. B28, 272 (1972).Google Scholar
  3. 3.
    J. Anwar, S.E. Tarling and P. Barnes:J. Pharm. Sci. 78, 337 (1989).Google Scholar
  4. 4.
    J. Szejtli:Topics in Inclusion Science-Cyclodextrin Technology, Chapter 3, Dordrecht, The Netherlands, Kluwer Academic Publishers (1988).Google Scholar
  5. 5.
    W. Saenger:Angew. Chem. Int. Ed. Engl. 19, 344 (1980).Google Scholar
  6. 6.
    K. Uekama, F. Hirayama and H. Koinuma:Chem. Lett., 1393 (1977).Google Scholar
  7. 7.
    K. Uekama, F. Hirayama, M. Otagiri, Y. Otagiri and K. Ikeda:Chem. Pharm. Bull. 26, 1162 (1978).Google Scholar
  8. 8.
    K. Uekama, F. Hirayama, S. Nasu, N. Matsuo and T. Irie:Chem. Pharm. Bull. 26, 3477 (1978).Google Scholar
  9. 9.
    M. Wang, H. Ueda and T. Nagai:Drug Dev. Ind. Pharm. 16, 571 (1990).Google Scholar
  10. 10.
    Cambridge Structural Database and Cambridge Structural Database System, April 1993, Version 5.05, Cambridge Crystallographic Data Centre, University Chemical Laboratory, Cambridge, England.Google Scholar
  11. 11.
    Enraf-Nonius:Structure Determination Package, Enraf-Nonius, Delft, The Netherlands (1979).Google Scholar
  12. 12.
    K. Harata:Bull. Chem. Soc. Jpn. 55, 2315 (1982).Google Scholar
  13. 13.
    G.M. Sheldrick:SHELX76, Program for crystal structure determination, Univ. of Cambridge, England (1976).Google Scholar
  14. 14.
    K. Harata:Bull. Chem. Soc. Jpn. 52, 2451 (1979).Google Scholar
  15. 15.
    A.D. French and V.G. Murphy:Carbohydr. Res. 27, 391 (1973).Google Scholar
  16. 16.
    W. Saenger:Inclusion Compounds, Volume 2, Chapter 8, London, Academic Press, edited by J.L. Atwood, J.E.D. Davies and D.D. MacNicol (1984).Google Scholar
  17. 17.
    C. Betzel, W. Saenger, B.E. Hingerty and G.M. Brown:J. Am. Chem. Soc. 106, 7545 (1984).Google Scholar
  18. 18.
    M.R. Caira and R. Mohamed:Acta Crystallogr. B49, 760 (1993).Google Scholar
  19. 19.
    T. Steiner and W. Saenger:J. Am. Chem. Soc. 115, 4540 (1993).Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Mino R. Caira
    • 1
  • Vivienne J. Griffith
    • 1
  • Luigi R. Nassimbeni
    • 1
  • Bosch van Oudtshoorn
    • 2
  1. 1.Department of ChemistryUniversity of Cape TownRondeboschSouth Africa
  2. 2.Scientific and Medical AffairsSOuth African DruggistsRandburgSouth Africa

Personalised recommendations