Skip to main content
Log in

Impaired degradation of phytanic acid in cells from patients with mitochondriopathies: Evidence for the involvement of ETF and the respiratory chain in phytanic acid α-oxidation

  • Published:
Journal of Inherited Metabolic Disease

Summary

Phytanic acid α-oxidation was studied in cultures of skin fibroblasts and myoblasts from patients with various defects of the respiratory chain in order to obtain information on the subcellular site and the mechanism of this pathway. In fibroblasts from patients with complex IV (cytochromec oxidase) deficiency or glutaricaciduria type II, phytanic acid α-oxidation was reduced to 14% of normal, whereas in myoblasts from patients with complex I (NADH-Q reductase) deficiency, it was normal. Apparently, at least one step of phytanic acid α-oxidation occurs in mitochondria and in this process electrons are transferred to the respiratory chain via the electron-transfer flavoprotein (ETF).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beard ME, Sapirstein V, Kolodny EH, Holtzman E (1985) Peroxisomes in fibroblasts from skin of Refsum's disease patients.J Histochem Cytochem 33: 480–484.

    Google Scholar 

  • Fingerhut R, Schmitz W, Conzelmann E (1993) Accumulation of phytanic acid α-oxidation intermediates in Zellweger fibroblasts.J Inher Metab Dis 16: 591–594.

    Google Scholar 

  • Goldfischer S, Moore CL, Johnson AB et al (1973) Peroxisomal and mitochondrial defects in the cerebo-hepato-renal syndrome.Science 182: 62–64.

    Google Scholar 

  • Huang S, van Veldhoven PP, Vanhoutte F, Parmentier S, Eyssen HJ, Mannaerts GP (1992) α-Oxidation of 3-methyl-substituted fatty acids in rat liver.Arch Biochem Biophys 296: 214–223.

    Google Scholar 

  • Jung ME, Ornstein PL (1977) A new method for the efficient conversion of alcohols into iodides via treatment with trimethylsilyl iodide.Tetrahedron Lett 31: 2659–2662.

    Google Scholar 

  • Klenk E, Kahlke W (1963) Über das Vorkommen der 3,7,11,15-Tetramethylhexadecansäure (Phytansäure) in den Cholesterinestern und anderen Lipoidfraktionen der Organe bei einem Krankheitsfall unbekannter Genese (Verdacht auf Heredopathia atactica polyneuritiformis, Refsum's Syndrom).Hoppe-Seyler's Z Physiol Chem 333: 133–139.

    Google Scholar 

  • Lazarow PB, Moser HW (1989) Disorders of peroxisome biogenesis. In Scriver CR, Beaudet AL, Sly WS, Valle D, eds.The Metabolic Basis of Inherited Disease, 6th edn. New York: McGraw-Hill, 1479–1509.

    Google Scholar 

  • Poll-The BT, Skjeldal OH, Stokke O, Poulos A, Demaugre F, Saudubray J-M (1989) Phytanic acid alpha-oxidation and complementation analysis of classical Refsum and peroxisomal disorders.Hum Genet 81: 175–181.

    Google Scholar 

  • Poulos A (1981) Diagnosis of Refsum's disease using [1-14C]phytanic acid as substrate.Clin Genet 20: 247–253.

    Google Scholar 

  • Poulos A, Barone E, Johnson DW (1980) Partial synthesis of [1-14C]phytanic acid.Lipids 15: 19–21.

    Google Scholar 

  • Poulos A, Sharp P, Whiting M (1984) Infantile Refsum's disease (phytanic acid storage disease): a variant of Zellweger's syndrome?Clin Genet 26: 579–586.

    Google Scholar 

  • Schmitz W, Fingerhut R, Conzelmann E (1994) Purification and properties of an α-methylacyl-CoA racemase from rat liver.Eur J Biochem 222:313–323.

    Google Scholar 

  • Singh I, Lazo O, Kalipada P, Singh AK (1992) Phytanic acid α-oxidation in human cultured skin fibroblasts.Biochim Biophys Acta 1180: 221–224.

    Google Scholar 

  • Skjeldal OH, Stokke O (1987) The subcellular localization of phytanic acid oxidase in rat liver.Biochim Biophys Acta 921: 38–42.

    Google Scholar 

  • Steinberg D (1989) Refsum disease. In Scriver CR, Beaudet AL, Sly WS, Valle D, eds.The Metabolic Basis of Inherited Disease, 6th edn. New York: McGraw-Hill, 1533–1550.

    Google Scholar 

  • Ten Brink HJ, Schor DSM, Kok RM, Poll-The BT, Wanders RJA, Jakobs C (1992) Phytanic acid α-oxidation: accumulation of 2-hydroxyphytanic acid and absence of 2-oxophytanic acid in plasma from patients with peroxisomal disorders.J Lipid Res 33: 1449–1457.

    Google Scholar 

  • Trijbels JMF, Berden JA, Monnens LAH et al (1983) Biochemical studies in the liver and muscle of patients with Zellweger syndrome.Pediatr Res 17: 514–517.

    Google Scholar 

  • Wanders RJA, van Roermund CWT (1993) Studies on phytanic acid α-oxidation in rat liver and cultured human skin fibroblasts.Biochim Biophys Acta 1167: 345–350.

    Google Scholar 

  • Watkins PA, Mihalik SJ, Skjeldal OH (1990) Mitochondrial oxidation of phytanic acid in human and monkey liver: implication that Refsum's disease is not a peroxisomal disorder.Biochem Biophys Res Commun 167: 580–586.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fingerhut, R., Schmitz, W., Garavaglia, B. et al. Impaired degradation of phytanic acid in cells from patients with mitochondriopathies: Evidence for the involvement of ETF and the respiratory chain in phytanic acid α-oxidation. J Inherit Metab Dis 17, 527–532 (1994). https://doi.org/10.1007/BF00711585

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00711585

Keywords

Navigation