Skip to main content
Log in

Functional implications of brain corticosteroid receptor diversity

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

  1. 1.

    Corticosteroids readily enter the brain and control gene expression in nerve cells via binding to intracellular receptors, which act as gene transcription factors. In the rat brain corticosterone binds to mineralocorticoid receptors (MRs) with a 10-fold higher affinity than to glucocorticoid receptors (GRs). As a consequence, these MRs are extensively occupied under basal resting conditions, while substantial GR occupation occurs at the circadian peak and following stress. Both receptors are colocalized in most, but not all, hippocampal neurons. In addition, some neurons contain aldosterone-selective MRs, if corticosterone is enzymatically inactivated. These aldosterone target neurons are presumably localized in the anterior hypothalamus, where they underlie central control of salt appetite and cardiovascular regulation.

  2. 2.

    The data show that MR- and GR-mediated effects proceed in a coordinate and often antagonistic mode of action: (i) in hippocampus MR activation maintains excitability, while GR occupancy suppresses excitability, which is transiently raised by excitatory stimuli; (ii) central MRs participate in control of the sensitivity of the neuroendocrine stress response system, while GRs are involved in termination of the stress response: (iii) MRs in the hippocampus have a role in regulation of behavioral reactivity and response selection. GR-mediated effects facilitate storage of information.

  3. 3.

    On the basis of these data, we propose that a relative deficiency or excess of MR- over GR-mediated neuronal effects may lead to a condition of enhanced or reduced responsiveness to environmental influences, alter behavioral adaptation, and promote susceptibility to stress. The findings may serve development of novel therapeutic strategies for treatment of stress-related brain diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahima, R. S., and Harlan, R. E. (1990). Charting of Type II glucocorticoid receptor-like immunoreactivity in the rat central nervous system.Neuroscience 39579–604.

    Google Scholar 

  • Ahima, R., Krozowski, Z., and Harlan, R. (1991). Type I corticosteroid receptor-like immunoreactivity in the rat CNS: Distribution and regulation by corticosteroids.J. Comp. Neurol. 313522–538.

    Google Scholar 

  • Akana, S. F., and Dallman, M. F. (1992). Feedback and facilitation in the adrenocortical system: Unmasking facilitation by partial inhibition of the glucocorticoid response to prior stress.Endocrinology 13157–68.

    Google Scholar 

  • Akana, S. F., Scribner, K. A., Bradbury, M. J., Strack, A. M., Walker, C.-D., and Dallman, M. F. (1992). Feedback sensitivity of the rat hypothalamo-pituitary-adrenal axis and its capacity to adjust to exogenous corticosterone.Endocrinology 131585–594.

    Google Scholar 

  • Antoni, F. A. (1993). Vasopressinergic control of pituitary adrenocorticotropin secretion comes of age.Frontiers Neuroendocrinol. 1476–123.

    Google Scholar 

  • Aronsson, M., Fuxe, K., and Dong, Y. (1988). Localization of glucocorticoid receptor mRNA in the male rat brain by in situ hybridization.Proc. Natl. Acad. Sci. USA 859331–9335.

    Google Scholar 

  • Arriza, J. L., Simerly, R. B., and Swanson, L. W. (1988). Neuronal mineralocorticoid as a mediator of glucocorticoid response.Neuron 1887–900.

    Google Scholar 

  • Azmitia, E. C., and McEwen, B. S. (1974). Adrenalcortical influence on rat brain tryptophan hydroxylase activity.Brain Res. 78291–302.

    Google Scholar 

  • Born, J., De Kloet, E. R., Wentz, H., Kern, W., and Fehm, H. L. (1991). Gluco- and antimineralocorticoid effects on human sleep: A role of central corticosteroid receptors.Am. J. Physiol. 260E183-E188.

    Google Scholar 

  • Bohn, M. C., Hussain, S., Gulliano, R., O'Banlon, M. K., and Dean, D. (1992). Glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) mRNA regulation in neurons and astrocytes.Soc. Neurosci. Abstr. 18419 (no: 204.5).

    Google Scholar 

  • Bradbury, M. J., Akana, S. F., Cascio, C. S., Levin, N., and Dallman, M. F. (1991). Regulation of basal ACTH secretion by corticosterone is mediated by both type I (MR) and type II (GR) receptors in rat brain.J. Steroid Biochem. Mol. Biol. 40133–142.

    Google Scholar 

  • Chan Palay, V., and Kohler, C. (1989).The Hippocampus:New Vistas; Allan R. Liss, New York.

    Google Scholar 

  • Chaouloff, F. (1992). Physiopharmacological interaction between stress hormones and central serotonergic systems.Brain Res. Rev. 181–32.

    Google Scholar 

  • Childs, G. V. (1992). Structure-function correlates in the corticotropes of the anterior pituitary.Frontiers Neuroendocrinol. 13271–317.

    Google Scholar 

  • Chrousos, G. P., and Gold, P. W. (1992). The concepts of stress and stress system disorders.JAMA 2671244–1252.

    Google Scholar 

  • Cintra, A. I. D. (1992).Chemical Anatomy of Glucorticoid Receptors in the Rat Brain, Thesis, Stockholm, Sweden.

  • Coirini, H., Magarinos, A. M., DeNicola, A. F., Rainbow, T., and McEwen, B. S. (1985). Further studies of brain aldosterone binding sites employing new mineralocorticoid and glucocorticoid receptor markers in vitro.Brain Res. 361212–216.

    Google Scholar 

  • Cools, A. R., Brachten, R., Heeren, D., Willemsen, A., and Ellenbroek, B. (1990). Search after neurobiological profile of individual-specific features of Wistar rat.Brain Res. Bull. 7449–69.

    Google Scholar 

  • Dallman, M. F., Akana, S. F., Cascio, C. S., Darlington, D. N., Jacobson, L., and Levin, N. (1987). Regulation of ACTH secretion: variation on a theme of B.Progr. Hormone Res. 43113–173.

    Google Scholar 

  • Dallman, M. F., Levin, N., Cascio, C. S., Akana, S. F., Jacobson, L., and Kuhn, R. W. (1989). Pharmacological evidence that inhibition of diurnal adrenocorticotropin secretion by corticosteroids is mediated via Type 1 corticosterone-preferring receptors.Endocrinology 1242844–2850.

    Google Scholar 

  • Dallman, M. F., Akana, S. F., Scribner, K. A., Bradbury, M. J., Walker, C.-D., Strack, A. M., and Cascio, C. S. (1992). Mortyn Jones Memorial Lecture. Stress, feedback and facilitation in the hypothalamo-pituitary-adrenal axis.J. Neuroendocrinol. 4517–526.

    Google Scholar 

  • de Kloet, E. R. (1991). Brain corticosteroid receptor balance and homeostatic control.Frontiers Neuroendocrinol. 1295–164.

    Google Scholar 

  • de Kloet, E. R., and Reul, J. M. H. M. (1987). Feedback action and tonic influence of corticosteroids on brain function: A concept arising from the heterogeneity of brain receptor systems.Psychoneuroendocrinology 1283–105.

    Google Scholar 

  • de Kloet, E. R., Van der Vies, J., and De Wied, D. (1974). The site of the suppressive action of dexamethasone on pituitary-adrenal activity.Endocrinology 9461–73.

    Google Scholar 

  • de Kloet, E. R., Wallach, G., and McEwen, B. S. (1975). Differences in corticosterone and dexamethasone binding to rat brain and pituitary.Endocrinology 96598–609.

    Google Scholar 

  • de Kloet, E. R., Kovács, G. L., Szabo, G., Telegdy, G., Bohus, B., and Versteeg, D. H. G. (1982). Decreased serotonin turnover shortly after adrenalectomy: Selective normalization after corticosterone substitution.Brain Res. 239659–663.

    Google Scholar 

  • de Kloet, E. R., Sijbesma, H., and Reul, J. M. H. M. (1986). Selective control by corticosterone of serotonin 1 receptor capacity in raphe-hippocampal system.Neuroendocrinology 42513–521.

    Google Scholar 

  • de Kloet, E. R., De Kock, S., Schild, V., and Veldhuis, D. (1988). Antiglucorticoid RU38486 attenuates retention of a behavior and disinhibits the hypothalamic-pituitary-adrenal axis at different sites.Neuroendocrinology 47109–115.

    Google Scholar 

  • de Kloet, E. R., Joëls, M., Oitzl, M., and Sutanto, W. (1991). Implication of brain corticosteroid receptor diversity for the adaptation syndrome concept. Stress Revisited. 1. Neuroendocrinology of Stress.Methods Achieve Exp. Pathol., Karger, Basel, Vol. 14, pp. 104–132.

    Google Scholar 

  • Denton, D. (1984).The Hunger for Salt: Anthropological, Physiological and Medical Analysis, Springer-Verlag, Berlin.

    Google Scholar 

  • Evans, R. M., and Arriza, J. L. (1989). A molecular framework for the actions of glucocorticoid hormones in the nervous system.Neuron 21105–1112.

    Google Scholar 

  • Fink, G., Robinson, I. C. A. F., and Tannahill, L. A. (1988). Effects of adrenalectomy and glucocorticoids on the peptides CRF-41, AVP and oxytocin in rat hypophysial portal blood.J. Physiol. 401329–345.

    Google Scholar 

  • Fuxe, K., Wikström, A. C., Ökret, S., Agnati, L. F., Härfstrand, A., Yu, Z. Y., Granholm, L., Zoli, M., Vale, W., and Gustafsson, J. Å. (1985). Mapping of glucorticoid receptor immunoreactive neurons in the rat tel- and diencephalon using a monoclonal antibody against rat liver glucocorticoid receptors.Endocrinology 1171803–1812.

    Google Scholar 

  • Gomez-Sanchez, E. P., Venkataraman, M. T., Thwaites, D., and Fort, C. (1990). ICV infusion of corticosterone antagonizes ICV-aldosterone hypertension.Am. J. Physiol. 258E649-E653.

    Google Scholar 

  • Gould, E., Woolley, C. S., and McEwen, B. S. (1991). The hippocampal formation: Morphological changes induced by thyroid, gonadal and adrenal hormones.Psychoneuroendocrinol. 1667–84.

    Google Scholar 

  • Gray, J. A. (1982).The Neuropsychology of Anxiety, Clarendon Press, Oxford.

    Google Scholar 

  • Gray, J. A., and McNaughton, N. (1983). Comparison between the behavioral effects of hippocampal and septal lesions: A review.Neurosci. Biobehav. Rev. 7119–188.

    Google Scholar 

  • Harbuz, M. S., and Lightman, S. L. (1992). Stress and the hypothalamo-pituitary-adrenal axis: Acute, chronic and immunological activation.J. Endocrinol 134327–339.

    Google Scholar 

  • Herman, J. P., Patel, P. D., Akil, H., and Watson, S. J. (1989a). Localization and regulation of glucocorticoid and mineralocorticoid receptor messenger RNAs in the hippocampal formation of the rat.Mol. Endocrinol. 31886–1894.

    Google Scholar 

  • Herman, J. P., Schäfer, M. K.-H., Young, E. A., Thompson, R., Douglass, J., Akil, H., and Watson, S. J. (1989b). Evidence for hippocampal regulation of neuroendocrine neurons of the hypothalamo-pituitary-adrenocortical axis.J. Neurosci. 93072–3082.

    Google Scholar 

  • Hurley, D. M., Accili, D., Stratakis, C. A., Karl, M., Vamvakopoulos, N., Rorer, E., Constantine, K., Taylor, S. I., and Chrousos, G. P. (1991). Point mutation causing a single amino acid substitution in the hormone binding domain of the glucocorticoidreceptor in familial glucocorticoid resistance.J. Clin. Invest. 87680–686.

    Google Scholar 

  • Ingle, D. J. (1954). Permissibility of hormone action: A review.Acta Endocrinol. 17172–194.

    Google Scholar 

  • Jacobson, L., and Sapolsky, R. (1991). The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis.Endocrine Rev. 12118–134.

    Google Scholar 

  • Joëls, M., and de Kloet, E. R. (1989). Effects of glucocorticoid and norepinephrine on the excitability in the hippocampus.Science 2451502–1505.

    Google Scholar 

  • Joëls, M., and de Kloet, E. R. (1990). Mineralocorticoid receptor-mediated changes in membrane properties of rat CA1 pyramidal neurons in vitro.Proc. Natl. Acad. Sci. 874495–4498.

    Google Scholar 

  • Joëls, M., and de Kloet, E. R. (1992a). Coordinative mineralocorticoid and glucocorticoid receptor-mediated control of responses to serotonin in rat hippocampus.Neuroendocrinology 55344–350.

    Google Scholar 

  • Joëls, M., and de Kloet, E. R. (1992b). Control of neuronal excitability by corticosteroid hormones.Trends Neurosci. 1525–30.

    Google Scholar 

  • Joëls, M., Hesen, W., and de Kloet, E. R. (1991). Mineralocorticoid hormones suppress serotonininduced hyperpolarization of rat hippocampal CA1 neurons.J. Neurosci. 112288–2294.

    Google Scholar 

  • Karst, H., and Joëls, M. (1991). The induction of corticosteroid actions on membrane properties of hippocampal CA1 neurons requires protein synthesis.Neurosci. Lett. 13027–31.

    Google Scholar 

  • Karst, H., Wadman, W. J., and Joëls, M. (1992). Effect of corticosteroid hormones on potassium currents of rat CA1 pyramidal neurons in vitro.J. Physiol. 452:217P.

    Google Scholar 

  • Kerr, D. S., Campbell, L. W., Hao, S.-Y., and Landfield, P. W. (1989). Corticosteroid modulation of hippocampal potentials: increased effect with aging.Science 2451505–1507.

    Google Scholar 

  • Kerr, D. S., Campbell, L. W., Thibault, O., and Landfield, P. W. (1992). Hippocampal glucocorticoid receptor activation enhances voltage-dependent Ca2+ conductances: Relevance to brain aging.Proc. Natl. Acad. Sci. USA 898527–8531.

    Google Scholar 

  • Kovács, K., and Makara, G. B. (1988). Corticosterone and dexamethasone act at different brain sites to inhibit adrenalectomy-induced adrenocorticotropin secretion.Brain Res. 474205–211.

    Google Scholar 

  • Kovács, K., and Mezey, E. (1978). Dexamethasone inhibits corticotropin-releasing factor gene expression in the rat paraventricular nucleus.Neuroendocrinology 46365–368.

    Google Scholar 

  • Kovács, K., Kiss, J. Z., and Makara, G. (1986). Glucocorticoid implants around the hypothalamic paraventricular nucleus prevent the increase of corticotropin releasing factor and arginine vasopressin immunostaining induced by adrenalectomy.Neuroendocrinology 44229–234.

    Google Scholar 

  • Kwak, S. P., Akil, H., and Watson, S. J. (1992a). Differential distribution of Type 1 corticosteroid receptor mRNA variants in rat hippocampus.22nd Meeting Society for Neurosciences, Anaheim, Abstr. 204.6.

  • Kwak, S. P., Young, E. A., Morano, I., Watson, S. J., and Akil, H. (1992b). Diurnal corticotropin-releasing hormone mRNA variation in the hypothalamus exhibits a rhythm distinct from that of plasma corticosterone.Neuroendocrinology 5574–83.

    Google Scholar 

  • Levine, S., Weinberg, J., and Ursin, H. (1978). Definition of the coping process and statement of the problem. InPsychobiology of Stress (S. Levine and H. Ursin, Eds.), Academic Press, New York, pp. 3–21.

    Google Scholar 

  • Madison, D. V., and Nicoll, R. A. (1986). Actions of noradrenaline recorded intracellularly in rat hippocampal CA1 pyramidal neurones in vitro.J. Physiol. 372221–244.

    Google Scholar 

  • Magariños, A., Somoza, G., and DeNicola, A. F. (1987). Glucorticoid negative feedback and glucocorticoid receptors after hippocampectomy in rats.Horm. Metab. Res. 19105–109.

    Google Scholar 

  • McEwen, B. S., Weiss, J. M., and Schwartz, L. S. (1968). Selective retention of corticosterone by limbic structures in rat brain.Nature 220911–912.

    Google Scholar 

  • McEwen, B. S., de Kloet, E. R., and Rostene, W. (1986). Adrenal steroid receptors and actions in the nervous system.Physiol. Rev. 661121–1188.

    Google Scholar 

  • McEwen, B. S., Angulo, J., Cameron, H., Chao, H. M., Daniels, D., Gannon, M. N., Gould, E., Mendelson, S., Sakai, R., Spencer, R., and Woolley, C. (1992). Paradoxical effects of adrenal steroids on the brain: protection versus degeneration.Biol. Psychiat. 31177–199.

    Google Scholar 

  • McGaugh, J. L. (1983). Hormonal influences on memory.Annu. Rev. Psychol. 34297–323.

    Google Scholar 

  • Mobley, P. L., and Sulser, F. (1980). Adrenal corticosids regulate sensitivity of noradrenaline receptor-coupled adenylate-cyclase in brain.Nature 286608–609.

    Google Scholar 

  • Munck, A., Guyre, P. M., and Holbrook, N. J. (1984). Physiological functions of glucocorticoids in stress and their relation to pharmacological actions.Endocrinol. Rev. 525–44.

    Google Scholar 

  • Nicoll, R. A. (1988). The coupling of neurotransmitter receptors to ion channels in the brain.Science 241545–551.

    Google Scholar 

  • Nicoll, R. A., Malenka, R. C., and Kauer, J. A. (1990). Functional comparison of neurotransmitter receptor subtypes in mammalian central nervous system.Phys. Rev. 70513–565.

    Google Scholar 

  • Oitzl, M. S., and de Kloet, E. R. (1992a). Selective corticosteroid antagonists modulate specific aspects of spatial orientation learning.Behav. Neurosci. 10662–71.

    Google Scholar 

  • Oitzl, M. S., and de Kloet, E. R. (1992b). Corticosterone modulates exploration via central mineralocorticoid receptors.Soc. Neurosci. Abstr. 300.17.

  • Orchinik, M., Murray, T. F., and Moore, F. L. (1991). A corticosteroid receptor in neuronal membranes.Science 2521848–1851.

    Google Scholar 

  • Palkovits, M. (1987). Organization of the stress response at the anatomical level.Progr. Brain Res. 7247–55.

    Google Scholar 

  • Piazza, P. V., Deminière, J. M., Le Moal, M., and Simon, H. (1989). Factors that predict individual vulnerability to amphetamine self-administration.Science 2451511–1513.

    Google Scholar 

  • Plotsky, P. M. (1991). Pathways to the secretion of adrenocorticotropin: A view from the portal.J. Neuroendocrinol. 31–9.

    Google Scholar 

  • Ratka, A., Sutanto, W., Bloemers, M., and de Kloet, E. R. (1989). On the role of brain mineralocorticoid (Type I) and glucocorticoid (Type II) receptors in neuroendocrine regulation.Neuroendocrinology 50117–123.

    Google Scholar 

  • Reiheld, C. T., and Teyler, T. J. (1984). Effects of corticosterone on the electrophysiology of hippocampal CA1 pyramidal cells in vitro.Brain Res. Bull. 12349–353.

    Google Scholar 

  • Reul, J. M. H. M., and de Kloet, E. R. (1985). Two receptor systems for corticosterone in rat brain: Microdistribution and differential occupation.Endocrinology 1172505–2512.

    Google Scholar 

  • Reul, J. M. H. M., Van den Bosch, F. R., and de Kloet, E. R. (1987). Differential response of type 1 and type 2 corticosteroid receptors to changes in plasma steroid level and circadian rhythmicity.Neuroendocrinology 45407–412.

    Google Scholar 

  • Reul, J. M. H. M., Pearce, P. T., Funder, J. W., and Krozowski, Z. S. (1989). Type I and Type II corticosteroid receptor gene expression in the rat: Effect of adrenalectomy and dexamethasone administration.Mol. Endocrinol. 31674–1680.

    Google Scholar 

  • Rey, M., Carlier, E., and Soumireu-Mourat, B. (1987). Effects of corticosterone on hippocampal slice electrophysiology in normal and adrenalectomized BALB/c mice.Neuroendocrinology 46424–429.

    Google Scholar 

  • Rey, M., Carlier, E., and Soumireu-Mourat, B. (1989). Effect of RU 486 on hippocampal slice electrophysiology in normal and adrenalectomized BALB/c mice.Neuroendocrinology 49120–125.

    Google Scholar 

  • Roberts, D. C. S., and Bloom, F. E. (1981). Adrenal steroid-induced changes inβ-adrenergic receptor binding in rat hippocampus.Eur. J. Pharmacol. 7437–41.

    Google Scholar 

  • Rots, N. Y., de Kloet, E. R., Rostene, W. H., and Cools, A. R. (1992). A rat line genetically selected for enhanced apomorphin susceptibility displays increased neuroendocrine stress responsiveness.9th Int. Congr. Endocrinol. Abstract P01.31.038.

  • Sapolsky, R. M., Packan, D. R., and Vale, W. W. (1988). Glucocorticoid toxicity in the hippocampus: In vitro demonstration.Brain Res. 453367–371.

    Google Scholar 

  • Sapolsky, R. M., Armanini, M. P., Packan, D. R., Sytton, S. W., and Plotsky, P. M. (1990). Glucocorticoid feedback inhibition of adrenocorticotropic hormone secretagogue release.Neuroendocrinology 51328–336.

    Google Scholar 

  • Selye, H. (1952).The Story of the Adaptation Syndrome, Acta Medica, Montreal.

    Google Scholar 

  • Singh, V. B., Corley, K. C., Phan, T., and Boadle-Biber, M. C. (1990). Increases in the activity of tryptophan hydroxylase from rat cortex and midbrain in response to acute or repeated sound stress are blocked by adrenalectomy and restored by dexmatheson treatment.Brain Res. 51666–76.

    Google Scholar 

  • Stone, E. A., McEwen, B. S., Herrera, A. S., and Carr, K. D. (1987). Regulation ofα andβ components of noradrenergic cycle AMP response in cortical slices.Eur. J. Pharmacol. 141347–356.

    Google Scholar 

  • Sutanto, W., and de Kloet, E. R. (1991). Mineralocorticoid receptor ligands: Biochemical, pharmacological and clinical aspects.Med. Res. Rev. 11617–639.

    Google Scholar 

  • Sutanto, W., de Kloet, E. R., De Bree, F., and Cools, A. R. (1989). Differential corticosteroid binding characteristics to the mineralocorticoid (type I) and glucocorticoid (type II) receptors in the brain of pharmacogenetically-selected apomorphine-susceptible and apomorphine-unsusceptible Wistar rats.Neurosci. Res. Commun. 519–26.

    Google Scholar 

  • Sutherland, R. J., and Rudy, J. W. (1988). Place learning in the Morris place navigation task is impaired by damage to the hippocampal formation even if the temporal demands are reduced.Psychobiology 16157–163.

    Google Scholar 

  • Swanson, L. W. (1987). The hypothalamus. InHandbook of Chemical Neuroanatomy 5 (A. Björklund, T. Hökfelt, and L. W. Swanson, Eds.), Part 1, pp. 1-124.

  • Swanson, L. W., and Simmonds, D. M. (1989). Differential steroid hormone and neural influences on peptide mRNA levels in CRH cells of the paraventricular nucleus: a hybridization histochemical study in the rat.J. Comp. Neurol. 285413–435.

    Google Scholar 

  • Talmi, M., Carlier, E., Rey, M., and Soumireu-Mourat, B. (1992). Modulation of the in vitro electrophysiological effect of corticosterone by extracellular calcium in the hippocampus.Neuroendocrinology 55257–263.

    Google Scholar 

  • Tausk, M. (1951).Das Hormon:Hat die Nebenniere tatsächlich eine Verteidigungsfunction?Vol. 3, Organon International BV, The Netherlands.

    Google Scholar 

  • Van den Berg, D. T. W. M., de Kloet, E. R., Van Dijken, H. H., and De Jong, W. (1990). Differential central effects of mineralocorticoid and glucocorticoid agonists and antagonists on blood pressure.Endocrinology 126118–124.

    Google Scholar 

  • Van Eekelen, J. A. M., Kiss, J. Z., Westphal, H. M., and de Kloet, E. R. (1987). Immunocytochemical study on the intracellular localization of the Type 2 glucocorticoid receptor in the rat brain.Brain Res. 436120–128.

    Google Scholar 

  • Van Eekelen, J. A. M., Jiang, W., de Kloet, E. R., and Bohn, M. C. (1988). Distribution of the mineralocorticoid and the glucocorticoid receptor mRNAs in the rat hippocampus.J. Neurosci. Res. 2188–94.

    Google Scholar 

  • Van Loon, G. R., Shum, A., and Sole, M. J. (1981). Decreased brain serotonin turnover after short term (two-hour) adrenalectomy in rats: A comparison of four turnover methods.Endocrinology 1081392–1402.

    Google Scholar 

  • Veldhuis, H. D., Van Koppen, C., Van Ittersum, M., and de Kloet, E. R. (1982). Specificity of the adrenal steroid receptor system in the rat hippocampus.Endocrinology 1102044–2249.

    Google Scholar 

  • Viau, V., and Meaney, M. J. (1991). Variations in the hypothalamic-pituitary-adrenal response to stress during the estrous cycle in the rat.Endocrinology 1292503–2511.

    Google Scholar 

  • Vidal, C., Jordan, W., and Zieglgansberger, W. (1986). Corticosterone reduces the excitability of hippocampal pyramidal cells in vitro.Brain Res. 38354–59.

    Google Scholar 

  • Whitnall, M. H., Perlstein, R. S., Mougey, E. H., and Neta, R. (1992). Effects of interleukin-1 on the stress-responsive and -nonresponsive subtypes of corticotropin-releasing hormone neurosecretory axons.Endocrinology 13137–44.

    Google Scholar 

  • Zeise, M. L., Teschemacher, A., Arragada, J., and Zieglgansberger, W. (1992). Corticosterone reduces synaptic inhibition in rat hippocampal and neocortical neurons invitro.J. Neuroendocrinol. 4107–113.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Kloet, E.R., Oitzl, M.S. & Joëls, M. Functional implications of brain corticosteroid receptor diversity. Cell Mol Neurobiol 13, 433–455 (1993). https://doi.org/10.1007/BF00711582

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00711582

Key words

Navigation