Cellular and Molecular Neurobiology

, Volume 13, Issue 4, pp 387–397 | Cite as

Immunocytochemical localization of glucocorticoid receptors in the spinal cord: Effects of adrenalectomy, glucocorticoid treatment, and spinal cord transection

  • Mónica Ferrini
  • Susana González
  • Tony Antakly
  • Alejandro F. De Nicola
Article

Summary

  1. 1.

    Studies were performed to determine the changes in immunoreactive (IR) type II glucocorticoid receptors of the ventral horn of the spinal cord produced by adrenalectomy (ADX), dexamethasone (DEX) treatment, and spinal cord transection in rats.

     
  2. 2.

    These treatments did not significantly affect the number of IR neurons of the ventral horn; however, staining intensity was enhanced after ADX and decreased following 4 days of DEX. A similar response pattern was observed for glial-type cells.

     
  3. 3.

    In control rats, about half of the ventral horn motoneurons were surrounded by immunoreactive glial perineuroral cells. These perineuronal cells increased after ADX (77% of counted neurons) and decreased following DEX treatment (32%;P < 0.05).

     
  4. 4.

    Two days after transection, staining was intensified in ventral horn motoneurons and glial cells located in the spinal cord below the lesion. Immunoreactive perineuronal cells increased to 85% of counted neurons, from a value of 66% in sham-operated rats (P < 0.05).

     
  5. 5.

    These findings suggest considerable plasticity of the spinal cord GCR in response to changes in hormonal levels and experimental lesions. It is possible that factors involved in cell to cell communication with transfer of hypothetical regulatory molecules may play roles in GCR regulation and the increased immunoreaction of glia associated with neurons following transection and ADX.

     

Key words

glucocorticoid receptor spinal cord immunocytochemistry dexamethasone down-regulation spinal cord transection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahima, R. S., and Harlan, R. E. (1991). Differential corticosteroid regulation of type II glucocorticoid receptor-like immunoreactivity in the rat central nervous system: Topography and implications.Endocrinology 129232–236.Google Scholar
  2. Antakly, T., and Eisen, H. J. (1984). Immunocytochemical localization of glucocorticoid receptor in target cells.Endocrinology 1151984–1989.Google Scholar
  3. Antakly, T., Thompson, N. J., and O'Donnell, D. (1989). Demonstration of the intracellular localization and up-regulation of glucocorticoid receptor by in situ hybridization and immunocytochemistry.Cancer Res. 492230–2234.Google Scholar
  4. Antakly, T., Raquidan, D., O'Donnel, D., and Katnick, L. (1990). Regulation of glucocorticoid receptor expression. I. Use of a specific radioimmunoassay and antiserum to a synthetic peptide of the n-terminal domain.Endocrinology 1261821–1828.Google Scholar
  5. Berkley, K. J., and Contos, N. (1987). A glial-neuronal-glial communication system in the mammalian central nervous system.Brain Res. 41449–67.Google Scholar
  6. Bracken, M. B., Shepard, M. J., Collins, W. F., Holford, T. R.,et al. (1990). A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury.N. Engl. J. Med. 3221405–1411.Google Scholar
  7. Braughler, T., and Hall, E. D. (1981). Acute enhancement of spinal cord synaptosomal (Na + K)ATPase activity in cats following intravenous methylprednisolone.Brain Res. 219464–469.Google Scholar
  8. Clarck, C. R., MacLusky, N. J., and Naftolin, F. (1981). Glucocorticoid receptors in the spinal cord.Brain Res. 217412–415.Google Scholar
  9. Conn, H. J., Darrow, M. A., and Emmel, V. M. (1965).Staining Procedures, Williams & Wilkins, Baltimore.Google Scholar
  10. De Nicola, A. F. (1993). Steroid hormones and neuronal regeneration: An overview. InNeural Injury and Regeneration (F. J. Seil, Ed.), Raven Press, New York, pp. 199–206.Google Scholar
  11. De Nicola, A. F., Moses, D. F., Gonzalez, S., and Ortí, E. (1989). Adrenocorticoid action in the spinal cord: Some unique molecular properties of glucocorticoid receptors.Cell. Mol. Neurobiol. 9179–192.Google Scholar
  12. Demopoulos, H. B., Famm, E. S., Seligman, M. L., Pietronigro, D. D., Tomasula, J., and De Crescito, V. (1982). Further studies on free radical pathology in the major central nervous system disorders: Effect of very high doses of methyl-prednisolone on the functional outcome, morphology and chemistry of experimental spinal cord impact injury.Can. J. Physiol. Pharmacol. 601415–1424.Google Scholar
  13. Duncan, G. E., and Stumpf, W. E. (1984). Target neurons for (3H)-corticosterone in the rat spinal cord.Brain Res. 307321–326.Google Scholar
  14. Fuxe, K., Harfstrand, A., Agnati, L. F., Yu, Z.-Y., Cintra, A., Wikstrom, A. C., Okret, S., Cantoni, E., and Gustafsson, J. A. (1985). Immunocytochemical studies on the localization of glucocorticoid receptor immunoreactive cells in the lower brain stem and spinal cord of the male rat using a monoclonal antibody against rat liver glucocorticoid receptor.Neurosci. Lett. 601–6.Google Scholar
  15. Gilmore, S. A., Sims, T. J., and Leiting, J. E. (1990). Astrocytic reactions in spinal gray matter following sciatic axotomy.Glia 3342–349.Google Scholar
  16. González, S., Moses, D. F., and De Nicola, A. F. (1990). Glucocorticoid receptors and enzyme induction in the spinal cord of rats: effects of acute transection.J. Neurochem. 54834–840.Google Scholar
  17. González, S. L., Ferrini, M., Coirini, H., González Deniselle, M. C., and De Nicola, A. F. (1992). Regulation of flunitrazepam binding in the dorsal horn of the spinal cord by adrenalectomy and corticosteroids.Brain Res. 589 97–101.Google Scholar
  18. Hall, E. D. (1982). Glucocorticoid effects on central nervous excitability and synaptic transmission.Int. Rev. Neurobiol. 23165–195.Google Scholar
  19. Hall, E. D. (1990). Steroids and neuronal destruction or stabilization. InSteroids and Neuronal Activity (D. Chadwick and K. Widdows, Eds.), J. Wiley & Sons, London, pp. 206–219.Google Scholar
  20. Hall, E. D., and Braughler, T. (1981). Acute effects of intravenous glucocorticoid pretreatment on thein vitro peroxidation of cat spinal cord tissue.Exp. Neurol. 73321–324.Google Scholar
  21. Hall, E. D., and McGinley, P. A. (1982). Effects of a single intravenous glucocorticoid dose on biogenic amine levels in cat lumbar spinal cord.J. Neurochem. 391787–1790.Google Scholar
  22. Hollenberg, S. M., Weinberger, C., Ong, E. S., Cerelli, G., Oro, R., Lebo, E. B., Thompson, E. B., Rosenfeld, M. G., and Evans, R. M. (1985). Primary structure and expression of a functional human glucocorticoid receptor cDNA.Nature 318635.Google Scholar
  23. Juurlink, B. H. J., and Devon, R. M. (1990). Macromolecular translocation—A possible function of astrocytes.Brain Res. 53373.Google Scholar
  24. Kalinyak, J. E., Dorin, R. I., Hoffman, A. R., and Perlman, A. J. (1987). Tissue-specific regulation of glucocorticoid receptor mRNA by dexamethasone.J. Biol. Chem. 26210441–10444.Google Scholar
  25. Mckeon, R. J., Schhreiber, R. C., Rudge, J. S., and Silver, J. (1991). Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes.J. Neurosci. 113398–3411.Google Scholar
  26. McEwen, B. S., De Kloet, E. R., and Rostene, W. (1986). Adrenal steroid receptors and actions in the nervous system.Physiol. Rev. 661121–1188.Google Scholar
  27. McGimsey, W. C., Cidlowsky, J. A., Stumpf, W. E., and Sar, M. (1991). Immunocytochemical localization of the glucocorticoid receptor in rat brain, pituitary, liver, and thymus with two new polyclonal antipeptide antibodies.Endorcinology 1293064–3072.Google Scholar
  28. Moses, D. F., Ortí, E., and De Nicola, A. F. (1989). Heterogeneity and properties of transformation of corticosteroid receptors in spinal cord and hippocampus.Brain Res. 481317–324.Google Scholar
  29. Moses, D. F., Gonzalez, S., McEwen, B. S., and De Nicola, A. F. (1991). Glucocorticoid type II receptors of the spinal cord show lower affinity than hippocampal type II receptors: Binding parameters obtained with different experimental protocols.J. Steroid Biochem. Mol. Biol. 395–12.Google Scholar
  30. Ortí, E., Coirini, H., and De Nicola, A. F. (1985). Properties and distribution of glucocorticoid binding sites in cytosol of the spinal cord.Neuroendocrinology 40225–231.Google Scholar
  31. Ortí, E., Magariños, A. M., and De Nicola, A. F. (1986). Evidence of high affinity, stereoselective binding sites for (3H)-aldosterone in the spinal cord.Neuroendocrinology 43404–409.Google Scholar
  32. Ortí, E., Moses, D. F., Grillo, C., and De Nicola, A. F. (1987). Glucocorticoid regulation of glycerolphosphate dehydrogenase and ornithine decarboxylase activities in the spinal cord of the rat.J. Neurochem. 48425–431.Google Scholar
  33. Rexed, B. (1954). A cytoarchitectonic atlas of the spinal cord in the cat.J. Comp. Neurol. 100297–380.Google Scholar
  34. Rosenfeld, P., Van Eekelen, J. A. M., Levine, S., and De Kloet, E. R. (1988). Ontogeny of the type 2 glucocorticoid receptor in discrete rat brain regions: An immunotochemical study.Dev. Brain Res. 42119–127.Google Scholar
  35. Sanchez, E. R., Meschinchi, S., Tienrungroj, W., Schlesinger, M. J., Toft, D. O., and Pratt, W. B. (1987). Relationship of the 90-kDa murine heat shock protein to the untransformed and transformed states of the L cell glucocorticoid receptor.J. Biol. Chem. 2626986–6991.Google Scholar
  36. Spencer, R., Young, E., Choo, P., and McEwen, B. S. (1990). Glucocorticoid type I and type II receptor binding: Estimates of in vivo receptor number, occupancy and activation with varying levels of steroid.Brain Res. 51437–48.Google Scholar
  37. Steiner, T. J., and Turner, L. M. (1972). Cytoarchitecture of the rat spinal cord.J. Physiol. 222:123P.Google Scholar
  38. Tornello, S., Ortí, E., De Nicola, A. F., Rainbow, T. C., and McEwen, B. S. (1982). Regulation of glucocorticoid receptors in brain by corticosterone treatment of adrenalectomized rats.Neuroendocrinology 35411–417.Google Scholar
  39. Tornello, S., Ortí, E., Weisenberg, L., and De Nicola, A. F. (1984). Regulation of adenosine-3′,5′-monophosphate levels in rat anterior pituitary by adrenal corticoids.Metabolism 33224–229.Google Scholar
  40. Trotter, J. L., and Gregory, W. F. (1980). Prolonged effects of large-dose methylprednisolone infusion in multiple sclerosis.Neurology 30702–708.Google Scholar
  41. Tytell, M., Greenberg, S. G., and Lasek, R. J. (1986). Heat shock-like protein is transferred from glia to axon.Brain Res. 363161–164.Google Scholar
  42. Weil, C. (1986). Characterization of glucocorticoid receptors in whole and cellular subfractions of embryonic chick spinal cord.Dev. Brain Res. 27167–173.Google Scholar
  43. White, F. P. (1980). Differences in proteins synthesized in vivo and in vitro by cells associated with the cerebral microvasculature: A protein synthesized in response to trauma.Neurosciences 51793–1799.Google Scholar
  44. Wikstrom, A.-C., Bakke, O., Okret, S., Bronnegard, M., and Gustafsson, J.-A. (1987). Intracellular localization of the glucocorticoid receptor: Evidence for cytoplasmic and nuclear localization.Endocrinology 1201232–1242.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Mónica Ferrini
    • 1
  • Susana González
    • 1
  • Tony Antakly
    • 2
  • Alejandro F. De Nicola
    • 1
  1. 1.Laboratory of Neuroendocrine BiochemistryInstituto de Biologia y Medicina ExperimentalBuenos AiresArgentina
  2. 2.Department of PathologyUniversity of MontrealMontrealCanada

Personalised recommendations