Skip to main content
Log in

Glial localization of interleukin-1α in invertebrate ganglia

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

  1. 1.

    Mytilus pedal ganglion contains a small population of glial cells that are immunopositive for interleukin-1α. Positively stained fibers can also be seen in the neuropil of these sections.

  2. 2.

    The marine wormNereis diversicolor also exhibits positive neural immunostaining for interleukin-1α.

  3. 3.

    Both organisms contain hemocytes that contain immunoactivity for interleukin-1α. The study suggests interleukin-1α to be an ancient cytokine given its presence in organisms that evolved significantly earlier than mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beck, G., O'Brien, R. F., and Habicht, G. S. (1989). Characterization of interleukin-1 from invertebrates. In.Defense Molecules (J. Marchalonis and C. Reinisch, Eds.), Alan R. Liss, New York, pp. 125–132.

    Google Scholar 

  • Blanckaert, V., Hondermark, H., and Boilly-Marer, Y. (1991). Differential expression of fibroblast growth factor-like molecules and their receptor: Putative role in tissue regeneration and growth in annelids.Dev. Biol. 231–12.

    Google Scholar 

  • De Biasi, S., and Vitellaro-Zuccarello, L. (1987). Distribution of 5-HT-immunoreactivity in the pedal ganglia ofMytilus galloprovincialis.Cell Tissue Res. 249111–116.

    Google Scholar 

  • Dhainaut-Courtois, N. G., Tramu, J.-C., Beauvillain, M., and Masson, M. (1986). A qualitative approach of the Nereis neuropeptides by use of antibodies to several vertebrate peptides.Neurochem. Int. 8(3):327–338.

    Google Scholar 

  • Fontana, A., Kristensen, F., Dubs, R., Gemsa, D., and Weher, E. (1982). Production of prostaglandin E and interleukin-1 like factors by cultured astrocytes and C-6 glioma cells.J. Immunol. 1292413–2419.

    Google Scholar 

  • Hughes, T. K., Jr., Smith, E. M., Cadet, P., Sinisterra, J., Leung, M. K., Shipp, M. A., Scharrer, B., and Stefano, G. B. (1990). Interaction of immunoactive monokines (IL-1 and TNF) in the bivalve molluscMytilus edulis.Proc. Natl. Acad. Sci. USA 874426–4429.

    Google Scholar 

  • Hughes, T. K., Smith, E. M., and Stefano, G. B. (1991). Detection of immunoreactive Interleukin-6 in invertebrate hemolymph and nervous tissue.Prog. NeuroImmuneEndocrin. 4234–239.

    Google Scholar 

  • Merrill, J. E. (1987). Microglia: Neural cells responsive to lymphokines and growth factors.Immunol. Today 8146–150. Nicaise, G. (1973). The gliointerstitial system of molluscs.Int. Rev. Cytol. 34:251–332.

    Google Scholar 

  • Paemen, L., Schoofs, L., and De Loof, A. (1992). Localization of Lom-AG-myotropic I in the brain and male accessory glands of the locust,Locusta migratoria. Cell Tissue Res. (in press).

  • Pentreath, V. U. (1986). Functions of invertebrate glia. InNervous Systems in Invertebrates (M. A. Ali, Ed.), Plenum Press, New York, pp. 61–103.

    Google Scholar 

  • Porchet-Hennere, E. (1990). Cooperation between different coelomocyte populations during the encapsulation response ofNereis diversicolor.J. Invert. Pathol. 56353–361.

    Google Scholar 

  • Porchet-Hennere, E., and Vernet, G. (1991). Cellular immunity in annelids: Melanin production by a sub population of granulocytes.Cell Tissue Res. (in press).

  • Porchet-Hennere, E., M'Berri, M., Dhainaut, A., and Porchet, M. (1987). Ultrastructural study of the encapsulation response ofNereis diversicolor.Cell Tissue Res. 248463–471.

    Google Scholar 

  • Radojcic, T., and Pentreath, V. V. (1979). Invertebrate glia.Prog. Neurobiol. 12115–179.

    Google Scholar 

  • Scarborough, D. E., Lee, S. L., and Reichlin, S. (1989). Effects of interleukin-1 on somatostatin synthesis in fetal rat brain cell cultures. InNeuroimmune Networks: Physiology and Diseases (E. J. Goetzl and N. H. Spector, Eds.), Alan R. Liss, New York, pp. 83–88.

    Google Scholar 

  • Scharrer, B. (1978). Peptidergic neuron: Facts and trends.Gen. Comp. Endocrinol. 3450–62.

    Google Scholar 

  • Stefano, G. B. (1991). Conformational matching a stabilizing signal system factor during evolution: Additional evidence in comparative neuroimmunology.Adv. Neuroimmunol. 171–82.

    Google Scholar 

  • Stefano, G. B., and Aiello, E. (1975). Histoflurescence localization of serotonin and dopamine in the nervous system and gill of Mytilus edulis (Bivalvia).Biol. Bull. 148141–156.

    Google Scholar 

  • Stefano, G. B., and Martin, R. (1983). Enkephalin-like immunoreactivity in the pedal ganglion of Mytilus edulis (bivalvia) and its proximity to dopamine containing structures.Cell. Tissue Res. 230147–153.

    Google Scholar 

  • Stefano, G. B., Catapane, E. J., and Aiello, E. (1976). Dopaminergic agents: Influence in molluscan nervous system.Science 194539–541.

    Google Scholar 

  • Stefano, G. B., Hall, B., Makman, M. H., and Dvorkin, B. (1981). Opioids inhibit potassiumstimulated dopamine release in the marine musselMytilus edulis and in the cephalopodOctopus bimaculatis.Science 213928–930.

    Google Scholar 

  • Stefano, G. B., Leung, M. K., Zhao, X., and Scharrer, B. (1989a). Evidence for the involvement of opioid neuropeptides in the adherence and migration of immunocompetent invertebrate hemocytes.Proc. Natl. Acad. Sci. USA 86626–630.

    Google Scholar 

  • Stefano, G. B., Cadet, P., and Scharrer, B. (1989b). Stimulatory effects of opioid neuropeptides on locomotory activity and conformational changes in invertebrate and human immunocytes: Evidence for a subtype of delta receptor.Proc. Natl. Acad. Sci. USA 866307–6311.

    Google Scholar 

  • Stefano, G. B., Zhao, X., Bailey, D., Metlay, M., and Leung, M. K. (1989c). High affinity dopamine binding to mouse thymocytes and Mytilus edulis (Bivalvia) hemocytes.J. Neuroimmunol. 21(1):67–74.

    Google Scholar 

  • Stefano, G. B., Cadet, P., Sinisterra, J., Charles, R., Barnett, J., Kuruvilla, S., and Aiello, E., (1990). Functional neural anatomy ofMytilus Edulis: Monoaminergic and opioid localization. InNeurobiology of Mytilus edulis (G. B. Stefano, Ed.), Manchester University Press, Manchester, England, pp. 38–56.

    Google Scholar 

  • Stefano, G. B., Smith, E. R., and Hughes, T. K. (1991a). Opioid induction of immunoreactive interleukin-1 inMytilus edulis and human immunocytes: An interleukin-1-like substance in invertebrate neural tissue.J. Neuroimmunol. 3229–34.

    Google Scholar 

  • Stefano, G. B., Cadet, P., Dokun A., and Scharrer, B. (1991b). A neuroimmunoregulatory-like mechanism responding to electrical shock in the marine bivalveMytilus edulis.Brain Behav. Immun. 4323–329.

    Google Scholar 

  • Vandesande, F. (1983). Immunocytochemical double staining techniques. InNeuroimmunocytochemistry (E. Cuello, Ed.), John Wiley and Sons, New York, pp. 257–272.

    Google Scholar 

  • Vitellaro-Zuccarello, L., and De Biasi, S. (1990). Ultrastructure of the ganglia and submicroscopial localization of putative neurotransmitters. InNeurobiology of Mytilus edulis (G. B. Stefano, Ed.), Manchester University Press, Manchester, England, pp. 57–73.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paemen, L.R., Porchet-Hennere, E., Masson, M. et al. Glial localization of interleukin-1α in invertebrate ganglia. Cell Mol Neurobiol 12, 463–472 (1992). https://doi.org/10.1007/BF00711547

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00711547

Key words

Navigation