Cellular and Molecular Neurobiology

, Volume 13, Issue 5, pp 517–527 | Cite as

Studies on the control of spermatogenic DNA synthesis by the mesocerebrum in the snailHelix aspersa

  • Philippe Gomot
Article

Summary

  1. 1.

    The results obtained after the removal of the supraesophageal part of the circumesophageal neural ring indicate that this part of the brain is involved in the control of spermatogenesis. In hibernating snails, when the supraesophageal ganglia are removed or disconnected from the subesophageal ganglia and from the cerebral sense organs, an increase in the rate of3H-thymidine incorporation in the male sex cells in the gonad occurs. This suggests that while the supraesophageal ganglia impart an inhibitory influence on the DNA synthesis during spermatogenesis, the subesophageal ganglia stimulate it.

     
  2. 2.

    The microsurgical removal of different parts of the supraesophageal ganglia suggests that the mesocerebrum plays a major inhibitory role on spermatogonial multiplication. This inhibitory activity orginates from groups of mesocerebral neurosecretory cells. These cells have cellular connections to the rest of the periesophageal nerve ring and with the endocrine cells of the dorsal bodies (DB).

     
  3. 3.

    The extirpartion of islets of neurons located near the cerebral commissure or the section of their axons which form synapse-like-structures with the DB induces an increase in the incorporation of3H-thymidine by the male sex cells in the gonad. In hibernating adult snails these experiments indicate the inhibitory function of groups of neurons from mesocerebrum on DNA spermatogenic synthesis induced by an increase in temperature (5 to 25°C). In the young snails, this area is the source of growth hormone.

     

Key words

snail central nervous system inhibitory function of mesocerebrum spermatogenic DNA synthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boer, H. H., and Joosse, J. (1975). InPulmonates. Functional Anatomy and Physiology (V. Fretter and J. Peake, Eds.), Academic Press, New York, Vol.1 pp. 245–307.Google Scholar
  2. Brunk, C. F., Jones, K. C., and James, T. W. (1979). Assay for nano-gram quantities of DNA in cellular homogenates.Ann. Biochem. 92497–500.Google Scholar
  3. Burton, R. F. (1975). A method of narcotizing snails (Helix pomatia). InPerspectives in Experimental Biology (P. S. Davies, Ed.), Pergamon Press, Oxford, Vol. 1, pp. 7–16.Google Scholar
  4. Chase, R. (1986). Brain cells that command sexual behavior in the snailHelix aspersa.J. Neurobiol. 17669–679.Google Scholar
  5. Durchon, M. (1962). Induction et inhibition expérimentale de l'épitoquie par homogreffes chez les Néréidiens.Bull. Soc. Zool. Fr. 87575–582.Google Scholar
  6. Ebberink, R. H. M., Van Loenhout, H., Geraerts, W. P. M., and Joosse, J. (1985). Purification and amino acid sequence of the ovulation neurohormone ofLymnaea stagnalis.Proc. Natl. Acad. Sci. USA 827767–7771.Google Scholar
  7. Geraerts, W. P. M., Ter Mat, A., and Vreugdenhil, E. (1988). The peptidergic neuroendocrine control of egg-laying behavior inAplysia andLymnaea. InInvertebrate Endocrinology, 2. Endocrinology of Selected Invertebrate Types (H. Laufer and G. H. Downer, Eds.), Alan R. Liss, New York, pp. 141–231.Google Scholar
  8. Geraerts, W. P. M., Smit, A. B., Li, K. W., Vreugdenhil, E., and Van Heerikhuizen, H. (1991). Neuropeptide gene families that control reproductive behaviour and growth in molluscs. InCurrent Aspects of the Neurosciences (N. N. Osborne, Ed.), MacMillan Press, Vol. 3, pp. 255-304.Google Scholar
  9. Gomot, A., Gomot, L., Marchand, C. R., Colard, C., and Bride, J. (1992). Immunocytochemical localization of insulin-related peptide(s) in the central nervous system of the snailHelix aspersa Müller. Involvement in the growth control.Cell. Mol. Neurobiol. 1221–32.Google Scholar
  10. Gomot, P., and Gomot, L. (1989a). Etude expérimentalein vivo du rôle du cerveau dans l'action de la température sur la spermatogenèse de l'escargotHelix aspersa en hibernation.C.R. Acad. Sci. Paris 308135–140.Google Scholar
  11. Gomot, P., and Gomot, L. (1989b). Inhibition of temperature-induced spermatogenic proliferation by a brain factor in hibernatingHelix aspersa (Mollusca).Experientia 45349–351.Google Scholar
  12. Gomot, P., Gomot, L., Marchand, C. R., and Colard, C. (1990a). Extirpation and transplantation of the brain of the snailHelix aspersa: A study of the survival of the animal and the implant.Can. J. Zool. 681505–1512.Google Scholar
  13. Gomot, P., Griffond, B., and Gomot, L. (1990b). Action de la température sur la synthèse d'ADN des cellules mâles et la spermatogenèse d'Helix aspersa en hibernation.J. Therm. Biol. 15267–280.Google Scholar
  14. Griffond, B., and Gomot, L. (1989). Endocrinology of reproduction in stylommatophoran pulmonate gastropods with special reference toHelix.Comp. Endocrinol. (Life Sci. Adv.)823–32.Google Scholar
  15. Griffond, B., Van Minnen, J., and Colard, C. (1992). Distribution of APGWa-immunoreactive substances in the central nervous system and reproductive apparatus ofHelix aspersa.Zool. Sci. 9533–539.Google Scholar
  16. Joosse, J. (1988). The hormones of molluscs. InInvertebrate Endocrinology, 2. Endocrinology of Selected Invertebrate Types (H. Laufer and G. H. Downer, Eds.), Alan R. Liss, New York, pp. 89–140.Google Scholar
  17. Joosse, J., and Geraerts, W. P. M. (1983). Endocrinology, InThe Mollusca, 4. Physiology (A. S. M. Saleuddin and K. M. Wilbur, Eds.), Academic Press, New York, pp. 317–406.Google Scholar
  18. Kai-Kai, M. A., and Kerkut, G. A. (1979). Mapping and ultrastructure of neurosecretory cells in the brain ofHelix aspersa.Comp. Biochem. Physiol. 64A97–107.Google Scholar
  19. Kuhlmann, D. (1963). Neurosekretion bei Heliciden (Gastropoden).Z. Zellforsch. 60909–932.Google Scholar
  20. Le Gall, S., Feral, C., Lengronne, C., and Porchet, M. (1987). Partial purification of the neuroendocrine mitogenic factor in the molluscCrepidula fornicata L.Comp. Biochem. Physiol. 86B393–396.Google Scholar
  21. Marchand, C. R., and Dubois, M. P. (1986). Immunocytochemical and ultrastructural evidence for supra- and suboesophageal localization of the dorsal-body cells of the snailHelix aspersa.Gen. Comp. Endocrinol. 63374–380.Google Scholar
  22. Mathieu, M. (1987).Etude expérimentale des contrôles exercés par les ganglions nerveux sur la gamétogenèse et les processus métaboliques associés chez la moule Mytilus edulisL., Thèse Doct. Etat, Univ. Caen.Google Scholar
  23. Mathieu, M., Lenoir, F., and Robbins, I. (1988). A gonial mitosis-stimulating factor in cerebral ganglia and hemolymph of the marine musselMytilus edulis L.Gen. Comp. Endocrinol. 72257–263.Google Scholar
  24. Melrose, G. R., O'Neill, M. C., and Sokolove, P. G. (1983). Male gonadotropic factor in brain and blood of photoperiodically stimulated slugs.Gen. Comp. Endocrinol. 52319–328.Google Scholar
  25. Nolte, A. (1965). Neurohemal-“Organe” by Pulmonaten (Gastropoda).Zool. Jb. Anat. 82265–280.Google Scholar
  26. Porchet, M. (1976). Données actuelles sur le contrôle endocrine de la maturation génitale des Néréidiens (Annélides Polychétes).Ann. Biol. 15329–377.Google Scholar
  27. Saleuddin, A. S. M., Mukai, S. T., and Khan, H. R. (1990). Hormonal control of reproduction and growth in the freshwater snailHelisoma (Mollusca: Pulmonata). InNeurobiology and Endocrinology of Selected Invertebrates (B. G. Loughton and A. S. M. Saleuddin, Eds.), Captus University, North York, Ontario, Canada, pp. 163–182.Google Scholar
  28. Sokolove, P. G., Melrose, G. R., Gordon, T. M., and O'Neill, M. C. (1983). Stimulation of spermatogonial DNA synthesis in slug gonad by a factor released from cerebral ganglia under the influence of long days.Gen. Comp. Endocrinol. 5095–104.Google Scholar
  29. Sokolove, P. G., McCrone, E. J., Van Minnen, J., and Duncan, W. C. (1984). Reproductive endocrinology and photoperiodism in a terrestrial slug. InPhotoperiodic Regulation of Insect and Molluscan Hormones, Ciba Foundation Symposium, Vol. 104, pp. 189–203.Google Scholar
  30. Van Minnen, J., and Sokolove, P. G. (1981). Neurosecretory cells in the central nervous system of the giant garden slug,Limax maximus.J. Neurobiol. 12297–301.Google Scholar
  31. Van Mol, J. J. (1960). Phénomènes neurosécrétoires dans les ganglions cérébroïdes d'Arion rufus.C.R. Acad. Sci. Paris 2502280–2281.Google Scholar
  32. Van Mol, J. J. (1967). Etude morphologique et phylogénétique du ganglion cérébroïde des Gastéropodes Pulmonés (Mollusques).Acad. Roy. Belg. Mém. Sci. 374–168.Google Scholar
  33. Vincent, C., Griffond, B., Gomot, L., and Bride, J. (1984a). Etudein vitro de l'influence des corps dorsaux sur l'ovogenèse d'Helix aspersa Müll.Gen. Comp. Endocrinol. 54230–235.Google Scholar
  34. Vincent, C., Griffond, B., Wijdenes, J., and Gomot, L. (1984b). Contrôle d'une glande endocrine: les corps dorsaux par le système nerveux central chezHelix aspersa.C.R. Acad. Sci. Paris 299421–426.Google Scholar
  35. Wells, M. J., and Wells, J. (1959). Hormonal control of sexual maturity inOctopus.J. Exp. Biol. 361–33.Google Scholar
  36. Wijdenes, J., Van Minnen, J., and Boer, H. H. (1980). A comparative study on neurosecretion demonstrated by the alcian blue-alcian yellow technique in three terrestrial pulmonates (Stylommatophora).Cell Tissue Res. 21047–56.Google Scholar
  37. Wijdenes, J., Vincent, C., Griffond, B., and Gomot, L. (1983). Ultrastructural evidence for the neuro-endocrine innervation of the dorsal bodies and their probable physiological significance inHelix aspersa. InMolluscan Neuroendocrinology (J. Lever and H. H. Boer, Eds.), Mon. Roy. Neth. Acad. Arts Sci., North-Holland, Amsterdam, Oxford, New York, pp. 147–152.Google Scholar
  38. Wijdenes, J., Schluter, N. C. M., Gomot, L., and Boer, H. H. (1987). In the snailHelix aspersa the gonadotropic hormone-producing dorsal bodies are under inhibitory nervous control of putative growth hormone-producing neuroendocrine cells.Gen. Comp. Endocrinol. 68224–229.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Philippe Gomot
    • 1
  1. 1.Laboratoire de Zoologie et EmbryologieFaculté des SciencesBesançon CedexFrance

Personalised recommendations